EAGLEHAWK NX Controller

Installation & Commissioning Instructions

TABLE OF CONTENTS

Safety Information 2 General Safety Information 2 Information as per EN 60730 2 WEEE Directive 2 Standards, Approvals, etc. 2 3rd-Party Software Licenses 2 Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 20 General Safety Considerations 20 General Safety Considerations 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 20 Behavior of Outputs	TABLE OF CONTENTS	1
Information as per EN 60730 2 WEEE Directive 2 Standards, Approvals, etc. 2 3rd-Party Software Licenses 2 Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Defore Installation 19 Dimensions 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Behavior of	Safety Information General Safety Information	2 2
WEEE Directive 2 Standards, Approvals, etc. 2 3rd-Party Software Licenses 2 Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts	Information as per EN 60730	2
Standards, Approvals, etc. 2 3rd-Party Software Licenses 2 Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Dimensions 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 General Safety Considerations 20 Uightning Protection 20 Wiring Terminals 20 Verminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during	WEEE Directive	2
3rd-Party Software Licenses 2 Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connec	Standards, Approvals, etc.	2
Specifications of Controller. 3 System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply. 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection<	3rd-Party Software Licenses	2
System Overview 4 Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Considerations 32 Panel Bus Considerations<	Specifications of Controller	3
Overview of Hardware 4 System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Considerations 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Con	System Overview	4
System Architecture 5 Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connec	Overview of Hardware	4
Bus and Port Connections 6 Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus	System Architecture	5
Set Up and Configuration 12 General 12 Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Bus and Port Connections	6
General12Procedure12Configuring Ports to Enable Webserver Functions14Firmware Update15Mounting/Dismounting19Before Installation19Dimensions19Wiring and Set-Up20General Safety Considerations20Lightning Protection20Wiring Terminals20Terminal Assignment21Power Supply22RIN-APU2422CLNXxx26xxx Connection Examples24Internal I/Os of the EAGLEHAWK NX26Engineering, Commissioning29Required Preparations29Behavior of Outputs during Download29Extra Parts30Software Licenses and Upgrades31Panel Bus Connection32Overview of Panel Bus I/O Modules32Panel Bus Considerations32Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus33	Set Up and Configuration	.12
Procedure 12 Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	General	.12
Configuring Ports to Enable Webserver Functions 14 Firmware Update 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Procedure	.12
Firmware Opdate 15 Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Configuring Ports to Enable Webserver Functions	.14
Mounting/Dismounting 19 Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Firmware Opdate	. 15
Before Installation 19 Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Mounting/Dismounting	.19
Dimensions 19 Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Before Installation	.19
Wiring and Set-Up 20 General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Dimensions	.19
General Safety Considerations 20 Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connections 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Wiring and Set-Up	.20
Lightning Protection 20 Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	General Safety Considerations	.20
Wiring Terminals 20 Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Lightning Protection	.20
Terminal Assignment 21 Power Supply 22 RIN-APU24 22 CLNXxxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Wiring Terminals	.20
Power Supply. 22 RIN-APU24 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning. 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Terminal Assignment	.21
CLNX-X2024 22 CLNXxx26xxx Connection Examples 24 Internal I/Os of the EAGLEHAWK NX 26 Engineering, Commissioning 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33		.22 22
Internal I/Os of the EAGLEHAWK NX	CI NXxxx26xxx Connection Examples	24
Engineering, Commissioning. 29 Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Internal I/Os of the EAGLEHAWK NX	.26
Engineering, Commissioning		
Required Preparations 29 Behavior of Outputs during Download 29 Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Engineering, Commissioning	.29
Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Required Preparations	.29
Extra Parts 30 Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Benavior of Outputs during Download	.29
Software Licenses and Upgrades 31 Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Extra Parts	.30
Panel Bus Connection 32 Overview of Panel Bus I/O Modules 32 Panel Bus Considerations 32 Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus 33	Software Licenses and Upgrades	.31
Overview of Panel Bus I/O Modules	Panel Bus Connection	32
Panel Bus Considerations	Overview of Panel Bus I/O Modules	.32
Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus33	Panel Bus Considerations	.32
	Connecting EAGLEHAWK NX via its RS485-1 Interface a Panel Bus	to .33

Connecting EAGLEHAWK NX via its RS485-2 Interface a Panel Bus	to 34
Addressing Panel Bus I/O Modules	35
Automatic Updating of Panel Bus I/O Module Firmware	35
	30
Field Devices	30
Field Devices	30
LonWorks Communications	39
General Information	39
Connecting to a LONWORKS Network	39
BACnet MS/TP Bus Connection	40
BACnet MS/TP Bus Considerations	40
Connecting EAGLEHAWK NX via its RS485-1 Interface	to
a BACnet MS/TP Bus	40
Connecting EAGLEHAWK NX via its RS485-2 Interface	to
a BACnet MS/TP Bus	42
Modbus Connection	13
Modbus Considerations	13
Connecting EAGLEHAWK NX via its RS485-1 Interface	to
a Modbus	44
Connecting EAGLEHAWK NX via its RS485-2 Interface	to
a Modbus	45
M-Bus Connection	46
M-Bus Considerations	46
M-Bus Connection Procedure	47
Controller Performance	48
Troubleshooting	49
FAGI FHAWK NX Controller Troubleshooting	49
Panel Bus I/O Module Troubleshooting	50
· ····· _ ··· · · · · · · · · · · · · ·	
Appendix 1: Earth Grounding	51
EAGLEHAWK NX Systems and SELV	51
EAGLEHAWK NX Systems and Standard EN60204-1	51
Earth Grounding of EN60204-1 Applicable Systems	51
Annondia 2	E 2
Appendix 2	53
Depagnition of Songer Foilure of Songer Insuite	53
Recognition of Sensor Failure of Sensor Inputs	53
Sensor Unaracteristics	ეკ
Index	56
Trademark Information	

LON, LONWORKS, and Neuron are trademarks of Echelon Corporation registered in the United States and other countries.

SAFETY INFORMATION General Safety Information

- When performing any work, all instructions given by the manufacturer and in particular the safety instructions provided in these Installation and Commissioning Instructions are to be observed. Make sure that the local standards and regulations are observed at all times.
- The EAGLEHAWK NX System (including the EAGLEHAWK NX controller, Panel Bus I/O modules, manual disconnect modules, and auxiliary terminal packages) may be installed and mounted only by authorized and trained personnel.
- If the controller housing is damaged or missing, immediately disconnect it from any power.
- If the device is broken or defective, do not attempt to repair it yourself; rather, return it to the manufacturer.
- It is recommended that devices be kept at room temperature for at least 24 hours before applying power. This is to allow any condensation resulting from low shipping / storage temperatures to evaporate.
- ► The EAGLEHAWK NX System must be installed in such a manner (e.g., in a lockable cabinet) as to ensure that uncertified persons have no access to the terminals.
- In the case of vertical mounting on DIN rails, the EAGLEHAWK NX controller should be secured in place using a commercially-available stopper.
- If the EAGLEHAWK NX System is modified in any way, except by the manufacturer, all warranties concerning operation and safety are invalidated.
- ► Rules regarding electrostatic discharge should be followed.
- Use only accessory equipment which comes from or has been approved by Honeywell.

Information as per EN 60730

Purpose

The purpose of the device is: OPERATING CONTROL. The EAGLEHAWK NX controller is a multifunctional non-safety control device intended for HVAC in home (residential, commercial, and light-industrial) environments.

Construction

The EAGLEHAWK NX controller is an independently mounted electronic control unit with fixed wiring.

Mounting Method

The EAGLEHAWK NX controller is suitable for mounting as follows:

- in cabinets;
- in fuse boxes conforming with standard DIN43880, and having a slot height of max. 45 mm;
- ▶ in cabinet front doors (using accessory MVC-80-AC2);
- ▶ on walls (using accessory MVC-80-AC1).

Table 1. Information as per EN 60730

Shock protection	Class II
Pollution degree	2
Installation	Class 3
Rated impulse voltage	330 V for SELV, 2500 V for relay outputs
Automatic action	Type 1.C (micro-interruption for the relay outputs)
Software class	Class A
Ball-pressure test temperature	housing parts >75 °C terminals >125 °C

WEEE Directive

WEEE: Waste Electrical and Electronic Equipment Directive

 At the end of the product life, dispose of the packaging and product in an appropriate recycling center.
 Do not dispose of the device with the

- Do not dispose of the device with the usual domestic refuse.
- Do not burn the device.

Standards, Approvals, etc.

Degree of Protection:	IP20 (mounted on walls, with two accessory MVC-80-AC1 covers) IP30 (mounted in cabinet doors, with accessory MVC-80-AC2)
Device meets EN 6073 UL916.	30-1, EN 60730-2-9, UL60730, and
Refer to Code of Pract	tice standards IEC 61000-5-1 and -2

Refer to Code of Practice standards IEC 61000-5-1 and -2 for guidance.

The device complies with Ethernet Protocol versions IEEEC 802.3.

The device supports BACnet IP and BACnet MS/TP communications as per ANSI / ASHRAE 135-2012.

3RD-PARTY SOFTWARE LICENSES

This product contains software provided by third parties. See also EAGLEHAWK NX Controller – Third-Party Software Licenses (Product Literature No.: EN2Z-1041GE51).

SPECIFICATIONS OF CONTROLLER

Table 2. EAGLEHAWK NX specifications 19 ... 29 VAC, 50/60 Hz or

Power supply	19 29 VAC, 50/60 Hz or 20 30 VDC
Power consumption	typically DC: 7 W; max. 9 W typically AC: 10 VA; max. 12 VA
Heat dissipation	Max. 9 W at DC power supply max. 9 W at AC power supply
Current consumption	typically DC: 300 mA; max. 375 mA typically AC: 400 mA; max. 500 mA
Ambient temperature	0 … 40 °C (wall-mounting) 0 … 50 °C (cabinet/door mounting)
Storage temperature	-20 +70 °C
Humidity	5 95% r.h. non-condensing
Dimensions	See Fig. 20 and Fig. 21.
Degree of protection	IP20 (mounted on walls, with two accessory MVC-80-AC1 covers) IP30 (mounted in cabinet doors, with accessory MVC-80-AC2)
Fire class	V0
Weight	0.6 kg (excl. packaging)

SYSTEM OVERVIEW Overview of Hardware

								orde	r no.					
				w	vitho	ut HN	11	1			with	нмі		
feature	description	max. cable length	CLNXEH00ND100A, CLNXEHSERIES00ND	CLNXEHS00ND100A	CLNXEH14ND100A, CLNXEHSERIES14ND	CLNXEHS14ND100A	CLNXEH26ND100A, CLNXEHSERIES26ND	CLNXEHS26ND100A	CLNXEH00D100A, CLNXEHSERIES00D	CLNXEHS00D100A	CLNXEH14D100A, CLNXEHSERIES14D	CLNXEHS14D100A	CLNXEH26D100A, CLNXEHSERIES26D	CLNXEHS26D100A
	NTC10kΩ / NTC20kΩ / 010 V / slow BI, 0.4 Hz	400 m	0	0	4	4	8	8	0	0	4	4	8	8
01	NTC10k Ω / NTC20k Ω / 010 V fix pull-up / slow BI, 0.4 Hz	400 m	0	0	0	0	2	2	0	0	0	0	2	2
BI	open = 24 V / closed 2.0 mA / totalizer 15 Hz	400 m	0	0	4	4	4	4	0	0	4	4	4	4
AO	011 V (max. 1 mA)	400 m	0	0	2	2	4	4	0	0	2	2	4	4
	Relay N.O. contact: 3 A, 250 VAC, 30 VDC	400 m	0	0	3	3	4	4	0	0	3	3	4	4
во	Relay N.O. contact (high in-rush): 10 A, 250 VAC, 30 VDC	400 m	0	0	1	1	1	1	0	0	1	1	1	1
Relay N.O. contact with one common: 3 A, 250 VAC, 30 VDC		400 m	0	0	0	0	3	3	0	0	0	0	3	3
total I/Os			0	0	14	14	26	26	0	0	14	14	26	26
bus interfaces	RS485-1, isolated, BACnet MS/TP, Panel Bus, or Modbus RTU Master or Slave communication	¹⁾ 1200 m	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1
	RS485-2, non-isolated, BACnet MS/TP, Panel Bus, or Modbus RTU Master or Slave communication (NOTE: It is imperative that the RS485-2 be powered by a power supply having the proper polarity. Failure to do so will make data transmission impossible.)	¹⁾ 1200 m	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1	1	²⁾ 1
	Ethernet Interfaces (e-mail communication, browser access, BACnet IP communication, Niagara Network, Modbus TCP)	100 m	2	2	2	2	2	2	2	2	2	2	2	2
	USB 2.0 Device Interface (as Network Interface)	3 m	1	1	1	1	1	1	1	1	1	1	1	1
	USB 2.0 Host Interface (max. 200 mA)	3 m	1	1	1	1	1	1	1	1	1	1	1	1
	RS232 M-Bus communication via 15-meter-long PW3 / PW20 / PW60 converters	¹⁾ 1000 m	1	1	1	1	1	1	1	1	1	1	1	1
	power LED (green)		1	1	1	1	1	1	1	1	1	1	1	1
	status LED (red; indicates an active alarm; is controlled by Niagara Alarm System; is configurable)		1	1	1	1	1	1	1	1	1	1	1	1
LEDs	LED L1 (yellow; lit = Daemon starting; flashing = station starting; if L2 is also flashing, then the station has started)		1	1	1	1	1	1	1	1	1	1	1	1
	LED L2 (yellow; lit = platform has started / is reachable; flashing = station has started / is reachable)		1	1	1	1	1	1	1	1	1	1	1	1
	bus status LEDs (for isolated RS485-1 interface) 2 <th< td=""><td>2</td></th<>						2							
¹⁾ Dependi 115.2 kbps	ng upon bit rate. However, in the case of configuration s, and the max. cable length is hence 800 m.	of RS485-2	2 for	Pan	el Bu	us, th	e co	mmı	unica	tion	rate	is se	t to	

²⁾ In the case of these devices, for Panel Bus functionality, an additional license must be purchased (see Table 19).

System Architecture

An EAGLEHAWK NX System consists of the EAGLEHAWK NX controller and various Panel Bus I/O modules. The EAGLEHAWK NX controller provides interface connections, which allow connection to external systems (e.g., BACnet controllers). Via the IF-LON External Interface, the EAGLEHAWK NX can also communicate with LONWORKS systems, including CentraLine LONWORKS I/O Modules.

Auxiliary parts (see section "Extra Parts" on page 30) enable special features.

Fig. 1. NX – Niagara eXtended Integrated Building Management architecture

Bus and Port Connections Overview

Risk of electric shock or equipment damage!

- ► Do not touch any live parts in the cabinet!
- Disconnect the power supply before making connections to or removing connections from terminals of the EAGLEHAWK NX controller or Panel Bus I/O modules.
- Do not reconnect the power supply until you have completed installation.
- Due to the risk of short-circuiting (see Fig. 23), it is strongly recommended that the EAGLEHAWK NX controller be supplied with power from a dedicated transformer. However, if the EAGLEHAWK NX controller is to be supplied by the same transformer powering other controllers or devices (e.g., the PW M-Bus Adapter), care must be taken to ensure that correct polarity is observed.
- Observe the rules regarding electrostatic discharge.

Fig. 2. Top view (with HMI and full complement of onboard I/Os)

Legend

- 1 RS232 / RJ45 socket (for connection of M-Bus and other RS232-based protocols; factory debugging)
- 2 Three-position slide switch (for setting bias and termination resistance of RS485-1)

- 3 Two Ethernet / RJ45 sockets (for BACnet IP communication); 10/100 Mbit/s; 1 "link" LED + 1 "activity" LED
- 4 USB 2.0 Host Interface (for connection of IF-LON2); max. 200 mA, high speed
- 5 RS485-1* (isolated; for BACnet MS/TP, Panel Bus, Modbus RTU communication, etc.)
- 6 RS485-2* (non-isolated; for BACnet MS/TP, Panel Bus, Modbus RTU communication, etc.)
- 7 LEDs
- 8 USB 2.0 Device Interface (for connection to COACH NX web browsers, and 3rd-party touch panels)
- 9 HMI (or RJ45 socket for connection of portable HMI)

*Modbus RTU Master/Slave communication is possible on the two RS485 interfaces.

Risk of electric shock or equipment damage!

It is prohibited to connect any of the RJ45 sockets of the EAGLEHAWK NX controller to a so-called PoE-enabled device ("Power over Ethernet").

RS232 / RJ45 Socket

Via its RS232 / RJ45 socket, the EAGLEHAWK NX controller can be connected (using an XW586 cable) to a PW M-Bus Adapter and thus to M-Bus networks. See also section "M-Bus Connection" on pg. 46.

Fig. 4. RS232 / RJ45 socket

Configuring the RS232 Interface in COACH NX

When you configure the RS232 interface (for M-Bus) in COACH NX, the corresponding Port Name will appear as shown in Fig. 5.

🕼 MbusNetwork (Mbus Network	
🗆 🔘 Status	{ok}
O Enabled	© true ▼
Fault Cause	
🕀 🔣 Health	Ok [08-Feb-18 3:50 PM CET]
🕀 🚇 Alarm Source Info	Alarm Source Info
🕀 🔣 Monitor	Ping Monitor
🕀 🥜 Tuning Policies	Tuning Policy Map
	Basic Poll Scheduler
🔲 🔘 Retry Count	2
Response Timeout	+00000h 00m 03.000s
🔲 🔘 Inter Message Delay	00000h 00m 00.300s (0ms - 1min)
🖃 🔊 Serial Port Config	Serial Helper
Status	{ok}
Port Name	R5232
Baud Rate	Baud300 🔻
🗆 🔘 Data Bits	Data Bits8 💌
Stop Bits	Stop Bit1 💌
O Parity	Even 💌
Flow Control Mode	RtsCtsOnInput RtsCtsOnOutput XonXoffOnInput XonXoffOnOutput
🗆 🔘 Initialisation Delay	00000h 00m 03.000s (0ms - 1min 40secs)
🖭 🗐 Network Database	Mbus Network Database
🗆 🔘 Search Fc Bit State	Stalse V
🗆 🔘 Search Fc Bit In Use	🔘 true 🔻
🗆 🔘 Inhibit Database Update	🔘 true 🔻

Fig. 5. Configuring the RS232 Interface in COACH NX

USB 2.0 Host Interface

Via its USB 2.0 Host interface, the EAGLEHAWK NX controller can be connected to, e.g., the IF-LON2 External Interface Adapter and thus to LONWORKS networks. Max. 200 mA, high speed. See also section "LonWorks Communications" on pg. 39.

Fig. 6. USB 2.0 Host interface

USB 2.0 Device Interface

All models of the EAGLEHAWK NX controller are equipped with a USB 2.0 Device Interface at the front. This interface is for connection to COACH NX and web browsers, or 3rd-party touch panels.

Fig. 7. USB 2.0 Device Interface

A standard USB type-B connector can be inserted into this USB 2.0 Device Interface. This USB 2.0 Device Interface is the recommended interface for connection to COACH NX.

Ethernet / RJ45 Sockets

The EAGLEHAWK NX controller is equipped with two Ethernet / RJ45 sockets, each featuring two LEDs.

Fig. 8. Ethernet / RJ45 sockets

The two Ethernet / RJ45 sockets are 10/100-Mbit/s Ethernet interfaces permitting communication (as per IEEEC 802.3) on any supported IP network, e.g.: BACnet (IP), FOX, etc.

Fig. 9. Ethernet / RJ45 sockets

NOTE: The Ethernet / RJ45 sockets are usually earthgrounded. For additional information, see also "Appendix 1: Earth Grounding" on pg. 51.

The two Ethernet interfaces can be used in either of two different ways (the corresponding configuration is done in COACH NX):

- "Separated networks" (factory default). In this scenario, each of the two Ethernet interfaces must be activated and located in a different subnet.
- "Switch functionality." In this scenario, one of the two Ethernet interfaces is deactivated. The deactivated Ethernet interface now functions in the loop-through (daisychain) mode and can therefore be used to continue the data line.
- **NOTE:** During any power failure of the EAGLEHAWK NX, the switching functionality is inoperative.

Fig. 10. Entering gateway address, disabling one of the two Ethernet interfaces in COACH NX

To ensure that the discovery of devices, datapoints, schedules, and histories does not fail, you should enter a gateway address. If there is no gateway address physically given by the Network Setting, then enter a gateway address that relates to the IP address of the enabled Ethernet Interface. In Fig. 10, the gateway address is 192.168.1.1, hence the IP address of Ethernet adapter 1 must be in the range of 192.168.1.2 to 192.168.1.255.

Default IP Addresses of Ethernet Interfaces 1 and 2

In any case, the default IP address of Ethernet interface 1 is: 192.168.200.20, mask 255.255.255.0 and the default IP address of Ethernet interface 2 is: 192.168.201.20, mask 255.255.255.0

LEDs

The EAGLEHAWK NX controller features the following LEDs:

Fig. 11. EAGLEHAWK NX controller LEDs Table 4. EAGLEHAWK NX controller LEDs

symbol	color	function, description
L1	yellow	Lit = Daemon starting; flashing = station starting; if L2 is also flashing, then the station has started.
L2	yellow	Lit = platform has started / is reachable; flashing = station has started / is reachable.
Тx	yellow	RS485-1 status LED indicating trans- mission of communication signals.
Rx	yellow	RS485-1 status LED indicating reception of communication signals.
\triangle	red	Indicates an active alarm; is controlled by Niagara Alarm System; is configurable.
C	green	Power LED.

See also section "EAGLEHAWK NX Controller Troubleshooting" on page 49 for a detailed description of the behaviors of the LEDs and their meanings.

RS485 Interfaces

General

The EAGLEHAWK NX controller features two RS485 interfaces:

- RS485-1 (consisting of push-in terminals 24 [GND-1], 25, and 26) is isolated and can be used for any RS485-based communication protocol available within Niagara Ecosystems, e.g.: Panel Bus, BACnet MS/TP, etc.
- RS485-2 (consisting of push-in terminals 29, 30, and 31 [GND-2]) is non-isolated (i.e. GND-2 is internally connected with terminal 1 [24V~0]) and can be used for any RS485-based communication protocol available within Niagara Ecosystems, e.g.: Panel Bus, BACnet MS/TP, etc.
- **NOTE:** It is imperative that the RS485-2 be powered by a power supply having the proper polarity. Failure to do so will make data transmission impossible.

Configuring the RS485 Interfaces in COACH NX

When you configure the two RS485 interfaces (for Modbus, BACnet MS/TP, or Panel Bus) in COACH NX, the corresponding Port Names will appear as shown in Fig. 12.

MstpPort (Network Po	ort)				
Network Number	1				
🖂 🔘 Link	MAC 0 on RS485 2 at Baud 9	500		47 kOHM	
🗆 🔘 Port Name	RS485_2				
Baud Rate	Baud _9600	-		RS485-1 (+)	25
🗆 🔘 Mstp Address	0	[0 - 127]			23
🗆 🔘 Max Master	127	[0 - 127]			
🗌 🔘 Max Info Fran	nes 20	[1 - 100]			
Support Exter	nded Frames 🔘 false 💌			RS485-1 (-)	26
🗆 🔘 Status	{ok}		D IS		
Fault Cause				47 KOHM	
E - Poll Service	BacnetMultiPoll				
🔲 🔘 Max Devices	max			GND-1 =	
🗆 🔘 Enabled	🔘 true 🔻		Fig. 14. RS485-1 th	ree-position slide switch se	ttina MID
🗆 🔘 Port Id	2		3		.
🗆 🔘 Port Info	MS/TP				

Fig. 12. Configuring the RS485 interfaces in COACH NX

RS485-1 Bias and Termination Resistors

RS485-1 is equipped with a three-position slide switch which can be used to switch its bias resistors OFF (position "MID" – this is the default), ON (position "BIAS"), and ON with an additional 150Ω termination resistor (position "END").

Fig. 13. RS485-1 three-position slide switch

The recommended slide switch setting depends upon the location and usage of the given EAGLEHAWK NX – see Fig. 14 through Fig. 16 and Table 5; it also depends upon the selected communication protocol (BACnet MS/TP, Panel Bus, or Modbus RTU Master communication, respectively).

setting	remarks
END	Controllers located on either end of bus should have this setting.
BIAS	In small bus networks, a min. of one and a max. of two controllers should have this setting.
MID	All other controllers (not set to "END" or "BIAS") on bus should have this setting (which is the default).

Fig. 15. RS485-1 three-position slide switch setting BIAS

Fig. 16. RS485-1 three-position slide switch setting END

- **NOTE:** All terminals are protected (up to 24 VAC) against short-circuiting and incorrect wiring except when the 3-position slide switch is set to "END," in which case the terminals of the RS485-1 bus (24, 25, and 26) have no such protection. Higher voltages may damage the device.
- NOTE: According to BACnet standards, a minimum of one and a maximum of two BACnet devices must have its/their bias resistors switched ON. In the case of the RS485-1 interface of the EAGLEHAWK NX, setting its slide switch to either "BIAS" or "END" fulfills this requirement.

RS485-2 Bias and Termination Resistors

The RS485-2 interface is not affected by the aforementioned three-position slide switch. The 550Ω bias resistors and 130Ω termination resistor of the RS485-2 are thus always ON.

Fig. 17. RS485-2 bias and termination resistors

NOTE: GND-2 is internally connected with 24V-0 (terminal 1)

RS485 Standard

According to the RS485 standard (TIA/EIA-485: "Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems"), only one driver communicating via an RS485 interface may transmit data at a time. Further, according to U.L. requirements, each RS485 interface may be loaded with a max. of 32 unit loads. E.g., CentraLine devices have as little as 1⁄4 unit load each, so that up to 128 devices can be connected.

BACnet MS/TP connections to the RS485 interfaces must comply with the aforementioned RS485 standard. Thus, it is recommended that each end of every connection be equipped with one termination resistor having a resistance equal to the cable impedance (120 Ω / 0.25 – 0.5 W).

RS485 systems frequently lack a separate signal ground wire. However, the laws of physics still require that a solid ground connection be provided for in order to ensure error-free communication between drivers and receivers – unless all of the devices are electrically isolated and no earth grounding exists.

IMPORTANT

In the case of new EAGLEHAWK NX controller installations, we strongly recommend using a separate signal ground wire. Doing otherwise may possibly lead to unpredictable behavior if other electrically nonisolated devices are connected and the potential difference is too high.

In the case of the installation of EAGLEHAWK NX controllers in already-existent RS485 two-wire systems (e.g., when replacing PANTHER and LION controllers with EAGLEHAWK NX controllers), not using a separate signal ground wire will probably have no undesirable effects.

The cable length affects the communication rate. Table 6 provides a few examples.

Table 6. Bit rate vs. max. cable length for RS485

	3	
Bit rate Max. cable length (L)		
9.6 - 76.8 kbps	1200 m	
*115.2 kbps 800 m		
* In the case of configuration of RS485-2 for Panel Bus, the		

For information on wire gauge, max. permissible cable length, possible shielding and grounding requirements, and the max. number of devices which can be connected to a bus, refer to standard EIA-485.

Modbus Connection

The EAGLEHAWK NX controller can function as a Modbus Master or Slave. In general, the RS485 wiring rules must be followed.

Wiring Topology

Only daisy-chain wiring topology is allowed.

Fig. 18. Allowed Modbus wiring topology

Other wiring topologies (e.g., star wiring, or mixed star wiring and daisy chain wiring) are prohibited; this is to avoid communication problems of the physical layer.

Fig. 19. Prohibited Modbus wiring topology (example)

Cables

See also section "EIA 485 Cable Specifications" on pg. 35. Use shielded twisted pair cable J-Y-(St)-Y 2 x 2 x 0,8. You *must* use three wires:

- One wire for D1 = Modbus +
- One wire for D0 = Modbus –
- One wire for the signal common

When using one pair for D1 and D0 and one wire of another pair for the signal common, CAT5 cable may also be used.

For connection details, see section "Modbus Connection" on pg. 43.

Shielding

Shielding is especially recommended when the Modbus cable is installed in areas with expected or actual electromagnetic noise. Avoiding such areas is to be preferred.

Use shielded twisted pair cable shielded twisted pair cable J-Y-(St)-Y $2 \times 2 \times 0.8$ and connect the Modbus to a noise-free earth ground – only once per Modbus connection.

RS485 Repeaters

RS485 repeaters are possible, but have not been tested by Honeywell. Hence it is within responsibility of the installing / commissioning person to ensure proper function.

NOTE: Each Modbus segment will require its own line polarization and line termination.

Modbus Master Specifications

Modbus Compliance

As per the Modbus standard, the EAGLEHAWK NX controller is a conditionally compliant "regular" Modbus device. The EAGLEHAWK NX controller differs from an unconditionally compliant "regular" Modbus device in that it does not support communication rates of 1.2, 2.4, and 4.8 kbps (because these communication rates are not marketrelevant).

Physical Layer

2-wire serial line RS485 (EIA-485) (with additional common) Communication rates: 9.6, 19.2, 38.4, 57.6, 76.8, and 115.2 kbps supported.

Max. number of devices: 32

Cable and wiring specifications: See section "Wiring and Set-Up" on pg. 20.

Communication Mode Typically: Modbus Master.

Transmission Mode

RTU (Remote Terminal Unit) and (via Ethernet) TCP/IP.

Address Range

Modbus slaves can have an address between 1 and 247. Discrete Inputs, Coils, Input Registers and Holding Registers can have an address between 1 and 65534.

Further Information

For further information, please refer to the Modbus Driver documentation (docModbus.pdf).

SET UP AND CONFIGURATION General

You can access the EAGLEHAWK NX controller via the RS232 interface using a terminal program (serial port) such as "PuTTY." This can be helpful in the following cases:

- When the EAGLEHAWK NX controller cannot be accessed via network. Solution: The network can be configured to the required settings (see step 6 below).
- When the EAGLEHAWK NX controller application or status is unknown Solution: The controller can be reset to the factory defaults (see step 7 below).

Before proceeding (see section "Procedure" below), you must first connect the RS232 interface of the EAGLEHAWK NX controller and the PC on which PuTTY is running using the following two cables connected end-to-end: XW586 and XW585.

The interface parameters for serial communication are as shown in the following screenshot:

Procedure

1. Start PuTTY. As soon as the following line displays, press c.

RESULT: The Boot menu displays.

2. To login and change the IP address and/ or configure further network settings, press 1.

RESULT: You will be asked to enter your username.

இ COM1 - PuTTY	
Please enter username:	

3. Enter the user name and press Enter.

RESULT: You will be asked to enter your password.

4. Enter the password and press Enter.

RESULT: The Main menu displays.

5. Press 1 in the Main menu.

RESULT: The Network Setup displays.

P COM1 - PuTTY	
Network Setup	*
Interface fec0	
1 - DHCP: disable	ed
2 - IP address: 192.16	3.100.20
3 - Network Mask: 255.25	5.255.0
Interface fec1	
4 - DHCP: disable	ed
5 - IP address:	
6 - Network Mask:	
7 - Gateway:	
8 - Hostname: EaglehawkN	< C
s - Safe changes & Exit	
x - Exit, discard changes	3
Enter your choice (57s):	-

- Configure the network as desired by applying the available options displayed.
- 7. To reset the controller to factory defaults, press F in the Boot menu.

ATTENTION: Resetting the controller to its factory defaults will result in the following:

- The station will be deleted.
- The platform credentials will be deleted.
- The IP settings will be reset to the factory defaults (see section "Default IP Addresses of Ethernet Interfaces 1 and 2" on pg. 8).

RECOMMENDATION: Before leaving (closing) the terminal program, go to "Network Setup" and enter the desired IP settings.

8. Reset the controller by entering Y.

FINISHED!

Configuring Ports to Enable Webserver Functions

The EAGLEHAWK NX controller provides webserver functionality, e.g., for using the CentraLine N4 Supervisor. In order to use webserver functions, the http and https standard port settings must be changed as follows:

- http standard port 80 to 8080
- https standard port 443 to 8443

After the changes are done, the controller is reachable via both pairs of ports, i.e., via the old standard ports and via the newly set ports.

Procedure

1. In the COACH NX Nav tree, expand the Services folder, and then double-click WebService.

RESULT: The Property Sheet Sheet displays to the right.

• Nav	Property Sheet	
	WebService (Web Service)	
	Status	{fault}
My Host: GE51DTF857G32.global.ds.honeywell.com (DEMC)	Fault Cause	!STOPPED
	Enabled	🔵 true 🔽
Br Platform	Http Port	80 tcp
 Station (EMC_Eaglehawk_4_2_Final_20) 	Http Enabled	true 🗸
🌲 Alarm	Https Port	443 tcp
Config	Https Enabled	true
	Https Only	false
UserService	C Hups Only	Toise
CategoryService	Https Min Protocol	TLSv1.0+ -
JobService	Https Cert	tridium
AlarmService	Require Https For Passwords	true 🔽
HistoryService	X Frame Options	Sameorigin 🚽
AuditHistory	Remember User Id Cookie	🔵 true 🔽
LogHistory	Logia Template	
ProgramService	Cogni remptate	
Backup Service	Log File Directory	file:^^webLogs
WebService	Client Environmente	Client Environmente

2. Expand the Http Port and Https Port options.

3. Change Http Port to 8080 and the Https Port to 8443.

4. Click the Save button at the bottom.

RESULT: The changed port settings are saved.

🔻 证 Http Port		8080 tcp
隌 Public Server Port	8080	[1-65535]
📔 Ip Protocol	Тср	
🗎 Http Enabled		🔵 true 🔍 🗸
🔻 🗎 Https Port		8443 tcp
📔 Public Server Port	8443	[1-65535]
Ip Protocol	Тср	

FINISHED!

Firmware Update

1. Check the firmware version installed in your EAGLEHAWK NX as follows: Open COACH NX, go to the Platform/Platform Administration, and check the version of the Niagara Runtime installed in the EAGLEHAWK NX.

192.168.10.130 (EskalationshilfeNX) : Platf	orm			🖍 Platform Administration
• Nav	Platform Administration			N
E O X □ 192.168.10.130	View Details	Baja Version	Tridium 4.4.73.24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Liser Accounts	Daemon Version	4.4.73.24	
Platform	- Osci Accounts	System Home	/mnt/app/niagara	
Application Director	🔍 System Passphrase	User Home	/mnt/data/niagara	
😡 Certificate Management	Change HTTP Port	Host	192.168.10.130 (EskalationshilfeNX)	
🙆 Distribution File Installer		Daemon HTTP Port	3011 (disabled in TLS settings)	
File Transfer Client	A Change TLS Settings	Daemon HTTPS Port	5011	
Lexicon Installer	Change Date/Time	Host ID	HONX-0000-0000-000B-2493	
C License Manager	Advanced Options	Model	nxubc	
	of Auvanced Options	Product	Eaglehawk N4	
Platform Administration	Change Output Settings	Local Date	11-Jul-18	
O Software Manager	View Daemon Output	Local Time	14:00 Mitteleuropäische Sommerzeit	
Station Copier		Local Time Zone	Europe/Berlin (+1/+2)	
TCP/IP Configuration	Configure Runtime Profiles	Operating System	UBoot (EHNX-UBOOT-1.0.0) (ONX (0.6.6)	
Remote File System	Configure NRE Memory	Niagara Runtime	nre-core-npsdk (4.4.73.24.0.12)	
Station (EskalationshilfeNX)	0.2.1	Architecture	arm	
	-5 Васкир	Enabled Runtime Profile	es rt,ux,wb	
	K Commissioning	Java Virtual Machine	Honeywell-oracle-ejre-nxubcqnx-arm (Ora	cle Corporation 1.8.0.161)
	O Reboot	Niagara Stations Enable	d enabled	
	C REDOUC	Number of CPUs	1	

- 2. Close COACH NX.
- 3. Get the firmware upgrade package from the CentraLine Partnerweb. At present, this package is contained in EAGLEHAWKNX-SupportPackage_17July2018.zip.
- 4. Navigate with Windows Explorer to your installation folder. For version NX 4.4.73.24, the default folder is c:\CentraLine\CentraLineNX-4.4.73.24

→ 👻 🛧 📑 → This PC → Loc	al Disk (C:) > CentraLine > CentraLineNX-4.4.7	3.24 >	
Desktop	^ □ Name ^	Date modified	Туре
Documents	4.4.73.24.1.7	24.04.2018 14:08	File folder
🖶 Downloads	bin	24.04.2018 14:18	File folder
b Music	cleanDist	24.04.2018 14:10	File folder
Pictures	conversion	24.04.2018 14:16	File folder
Videos	defaults	12.06.2018 14:20	File folde
	docs	24.04.2018 14:08	File folde
Level Disk (C)	etc	24.04.2018 13:47	File folde
Local Disk (C:)	javadoc	24.04.2018 14:08	File folde
bkcup	jre	24.04.2018 13:49	File folde
CentraLine	lib	24.04.2018 14:18	File folder
CentraLineNX-4.2.36.34	modules	12.06.2018 8:29	File folder
CentraLineNX-4.3.58.18	printout	24.04.2018 14:17	File folder
CentraLineNX-4.4.73.24	security	24.04.2018 15:02	File folder
COACHAX-38111	sw	12.06.2018 14:15	File folder
COACHER SIGNAL	Daemon User Home	24.04.2018 14:18	Shortcut

- 5. Double click the "Workbench User Home" link, you will be redirected to the user home
- 6. Navigate to <user home>/sw/inbox folder. Resulting path for 4.4. is: C:\Users\<your username>\Niagara4.4\tridium\sw\inbox
- 7. Copy and paste all four firmware files (contained in the firmware upgrade package) into the aforementioned inbox.
- 8. Run the platform daemon.
- 9. Restart COACH NX.

10. Connect to the EAGLEHAWK NX and start the Commissioning Wizard.

192.168.10.130 (EskalationshilfeNX) : Platfor	m			🖍 Platform Administration 👻
• Nav	Platform Administration			
ピ 🖸 🕱 🖨 192.168.10.130 🗸	View Details	Baja Version	Tridium 4.4.73.24	W _
▼ a Platform	User Accounts	System Home	/mnt/app/niagara	
Application Director	🔍 System Passphrase	User Home	/mnt/data/niagara	
Certificate Management		Host	192.168.10.130 (EskalationshilfeNX)	
Distribution File Installer	- change in it fore	Daemon HTTP Port	3011 (disabled in TLS settings)	
File Transfer Client	Change TLS Settings	Daemon HTTPS Port	5011	
	() Change Date/Time	Host ID	HONX-0000-0000-000B-2493	
		Model	nxubc	
U License Manager	Advanced Options	Product	Eaglehawk N4	
Platform Administration	Change Output Settings	Local Date	11-Jul-18	
O Software Manager	View Deemon Output	Local Time	14:00 Mitteleuropäische Sommerzeit	
Station Copier	The view baenon output	Local Time Zone	Europe/Berlin (+1/+2)	
TCP/IP Configuration	Configure Runtime Profiles	Operating System	UBoot (EHNX-UBOOT-1.0.0) / QNX (0.6.6)	
Remote File System	Configure NRE Memory	Niagara Runtime	nre-core-npsdk (4.4.73.24.0.12)	
Station (EskalationshilfeNX)	<u></u>	Architecture	arm	
	• Васкир	Enabled Runtime Profiles	rt,ux,wb	
	K Commissioning	Java Virtual Machine	Honeywell-oracle-ejre-nxubcqnx-arm (Oracl	e Corporation 1.8.0.161)
	C Reboot	Niagara Stations Enabled	enabled	
	O ACDOUL	Number of CPUs	1	

- 11. Deactivate all checkboxes; only Update Core Software needs to be selected.
- 12. Start the commissioning process.

his using a subject of a section wing a bast to sup sta	iana Diana akasi kalaw faranak tura of an finuratian
hange you wish to make:	tions. Please check below for each type of configuration
Request or install software licenses	
Set enabled runtime profiles	
Install a station from the local computer	
Install lexicons to support additional languages	
🗹 Install/upgrade modules	
Install/upgrade core software from distribution files	
Sync with my local system date and time	
Configure TCP/IP network settings	
Configure system passphrase	
Configure additional platform daemon users	
Clear All Check All	

92.168.10.130 (EskalationshilfeNX) : Platfo	orm		1	Platform Administra
• Nav	Platform Administration			N
Lº O 🗶 🖸 192.168.10.130 -	View Details	Baja Version	Tridium 4.4.73.24	45
Platform	User Accounts	Daemon Version System Home	4.4.73.24 /mnt/app/niagara	
Application Director	System Passphrase	User Home	/mnt/data/niagara	
Certificate Management	Change HTTP Port	Host Daemon HTTP Port	192.168.10.130 (EskalationshilfeNX) 3011 (disabled in TLS settings)	
Distribution File Installer	Change TLS Settings	Daemon HTTPS Port	5011	
File Transfer Client	Change Date/Time	Host ID	HONX-0000-0000-000B-2493	
Dicense Manager	Advanced Options	Model	nxubc Faglebawk N4	
🚫 Platform Administration	Change Output Settings	Local Date	11-Jul-18	
 Software Manager Station Copier 	View Daemon Output	Local Time Local Time Zone	14:00 Mitteleuropäische Sommerzeit Europe/Berlin (+1/+2)	
TCP/IP Configuration	Configure Runtime Profiles	Operating System	UBoot (EHNX UBOOT 1 0.0) (ONX (0.6.6)	
Remote File System	Configure NRE Memory	Niagara Runtime	nre-core-npsdk (4.4.73.24.0.14)	
Station (EskalationshilfeNX)	🕲 Backup	Architecture Enabled Runtime Profi	arm les rt,ux,wb	
	Commissioning	Java Virtual Machine Niagara Stations Enabl	Honeywell-oracle-ejre-nxubcqnx-arm (Oracle Corp ed enabled	ooration 1.8.0.161)
		Number of CPUs	1	

13. After a successful update, the Platform Administration should show the new firmware version in the Niagara Runtime field:

FINISHED!

MOUNTING/DISMOUNTING

Before Installation

IMPORTANT

To allow the evaporation of any condensation resulting from low shipping / storage temperatures, keep the controller at room temperature for at least 24 h before applying power.

US requirement, only: This device must be installed in a UL-listed enclosure offering adequate space to maintain the segregation of line voltage field wiring and Class 2 field wiring.

In the case of vertical mounting on DIN rails, the EAGLEHAWK NX controller should be secured in place using a commerciallyavailable stopper. See also the EAGLEHAWK NX - Mounting Instructions (MU1Z-1039GE51).

Dimensions

Fig. 20. EAGLEHAWK NX controller (w/o HMI but with RJ45 socket for connection of portable HMI, and with full complement of onboard I/Os), dimensions (in mm)

Fig. 21. EAGLEHAWK NX controller with covers, dimensions (in mm)

NOTE: Use of the covers (MVC-80-AC1) obstructs access to the Ethernet and USB 2.0 Host Interfaces and RS232 socket.

WIRING AND SET-UP General Safety Considerations

- All wiring must comply with applicable electrical codes and ordinances, including VDE, National Electric Code (NEC) or equivalent, and any local regulations must be observed. Refer to job or manufacturer's drawings for details. Local wiring guidelines (e.g., IEC 364-6-61 or VDE 0100) may take precedence over recommendations provided here.
- Electrical work should be carried out by a qualified electrician.
- Electrical connections must be made at terminal blocks.
- For Europe, only: To comply with CE requirements, devices with a voltage in the range of 50 ... 1000 VAC or 75 ... 1500 VDC which are not provided with a supply cord and plug or with other means for disconnection from the supply having a contact separation of at least 3 mm in all poles must have the means for disconnection incorporated in the fixed wiring.

🖄 WARNING

Risk of electric shock or equipment damage!

- Observe precautions for handling electrostatic sensitive devices.
- Do not touch any live parts in the cabinet.
- ► Do not open the controller housing.
- Disconnect the power supply before making connections to or removing connections from terminals of the EAGLEHAWK NX controller and devices wired to it.
- ► Do not use spare terminals as wiring support points.
- To prevent risk of injury due to electrical shock and/or damage to the device due to short-circuiting, low-voltage and high-voltage lines must be kept separate from one another.
- All terminals are protected (up to 24 VAC) against shortcircuiting and incorrect wiring (unless the 3-position slide switch is set to "END," in which case the terminals of the RS485-1 bus [24, 25, and 26] have no such protection). Higher voltages may damage the device.
- Do not reconnect the power supply until you have completed the installation.

Fusing Specifications

System Fusing

We recommend that the system be equipped with an external fuse.

Fusing of Active Field Devices

F2 (depends upon given load).

Lightning Protection

Please contact your local Honeywell representative for information on lightning protection.

Wiring Terminals

The EAGLEHAWK NX is equipped with push-in terminal plugs.

Fig. 22. Inserting/removing wires from push-in terminals

- NOTE: With solid conductors, ferrules are prohibited.
- NOTE: Use only one conductor per push-in terminal.
- **NOTE:** If, nevertheless, two stranded wires are to be connected to a single push-in terminal, twin wire end ferrules must be used.

Table 7. EAGLEHAWK NX push-in terminal wiring specifications

plug gauge	$0.2 \dots 1.50 \text{ mm}^2$
solid conductor H05(07) V-K	$0.2 \dots 1.50 \text{ mm}^2$
stranded conductor H05(07) V-K	$0.2 \dots 1.50 \text{ mm}^2$
stranded conductor with wire end ferrules (w/o plastic collar)	0.2 1.50 mm ²
stripping length	10.0 +1.0 mm

Terminal Assignment

		Table 8. Terminal assignment			
terminal no.	signal	Description	CLNXxxx14xxx	CLNXxx26xxx	CLNXxxx00xxx
1	24V-0	supply voltage (GND), int. connected with term. 31 and system GND (term. 19+37)	Х	Х	Х
2	24V~	supply voltage (24V)	Х	Х	Х
3,4	-	not used	-	-	-
5	BO1	Binary output 1. N.O. relay contact switching input power connected to terminal 8	-	Х	-
6	BO2	Binary output 2. N.O. relay contact switching input power connected to terminal 8	- 1	Х	-
7	BO3	Binary output 3. N.O. relay contact switching input power connected to terminal 8	-	Х	-
8	IN1,2,3	Common relay contact for BO1, BO2, and BO3		Х	-
9	IN4	Relay contact for BO4	Х	Х	_
10	BO4	Binary output 4. N.O. relay contact switching input power connected to terminal 9	Х	Х	-
11	BO5	Binary output 5. N.O. relay contact switching input power connected to terminal 12	Х	Х	-
12	IN5	Relay contact for BO5	Х	Х	-
13	IN6	Relay contact for BO6	Х	Х	-
14	BO6	Binary output 6. N.O. relay contact switching input power connected to terminal 13	Х	Х	-
15	BO7	Binary output 7. N.O. relay contact switching input power connected to terminal 16	Х	Х	-
16	IN7	Relay contact for BO7	Х	Х	-
17	IN8	Relay contact for BO8	-	X	-
18	BO8	Binary output 8. N.O. relay contact switching input power connected to terminal 17	-	Х	-
19	GND	Ground terminal (see NOTE below)	Х	Х	-
20	AO1	Analog output 1	Х	Х	-
21	AO2	Analog output 2	Х	Х	-
22	AO3	Analog output 3	<u> </u>	Х	-
23	AO4	Analog output 4	-	Х	-
24	GND-1	ref. GND of RS485-1 (isolated)	Х	Х	Х
25	485-1+	"+" signal for RS485-1 (isolated)	Х	Х	Х
26	485-1-	"-" signal for RS485-1 (isolated)	Х	Х	Х
27,28		not used	-	-	-
29	485-2+	"+" signal for RS485-2 (non-isolated)	Х	Х	Х
30	485-2-	"-" signal for RS485-2 (non-isolated)	Х	Х	Х
31	GND-2	ref. GND of RS485-2, int. conn. with 24V-0 (term. 1) and system GND (term. 19+37)	Х	Х	Х
32	-	not used	-	-	-
33	BI1	Binary input 1 (static dry contact) / pulse counter (fast totalizer)	Х	Х	-
34	BI2	Binary input 2 (static dry contact) / pulse counter (fast totalizer)	Х	Х	-
35	BI3	Binary input 3 (static dry contact) / pulse counter (fast totalizer)	Х	Х	-
36	BI4	Binary input 4 (static dry contact) / pulse counter (fast totalizer)	Х	Х	-
37	GND	Ground terminal (see NOTE below)	Х	Х	-
38	UI9	Universal input 9 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	-	Х	-
39	UI10	Universal input 10 (for NTC10k Ω / NTC20k Ω / 010 V / slow BI)	-	Х	-
40	UI1	Universal input 1 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	Х	Х	-
41	UI2	Universal input 2 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	Х	Х	-
42	UI3	Universal input 3 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	Х	Х	-
43	UI4	Universal input 4 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	Х	Х	-
44	UI5	Universal input 5 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	-	Х	-
45	UI6	Universal input 6 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	-	Х	-
46	UI7	Universal input 7 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	-	Х	-
47	UI8	Universal input 8 (for NTC10kΩ / NTC20kΩ / 010 V / slow BI)	-	Х	-

NOTE: All AOs, UIs, and BIs share the same ground potential. It is thus possible to connect just one combined GND signal for all AOs, UIs, and BIs. Auxiliary terminals may be used if needed.

Power Supply Powering EAGLEHAWK NX

Power is supplied via a removable terminal plug (attached to terminals 1 and 2).

The power supply of the EAGLEHAWK NX controller must conform to Safety Class II. To reduce overall current consumption, the EAGLEHAWK NX can be powered by a switch power supply (rather than by a transformer). See also Table 2 on pg. 3.

NOTE: Due to the risk of short-circuiting (see Fig. 23), it is strongly recommended that the EAGLEHAWK NX controller be supplied with power from a dedicated transformer. However, if the EAGLEHAWK NX controller is to be supplied by the same transformer powering other controllers or devices (e.g., the PW M-Bus Adapter), care must be taken to ensure that correct polarity is observed.

Fig. 23. Incorrect polarity \rightarrow SHORT-CIRCUITING!

Transformer Data

In Europe, if the EAGLEHAWK NX is powered by transformers, then such transformers must be safety isolating transformers conforming to IEC61558-2-6. In the U.S. and Canada, if the EAGLEHAWK NX is powered by transformers, then such transformers must be NEC Class-2 transformers.

part # primary side secondary side 1450 7287 -001 120 VAC 24 VAC, 50 VA 2 x 24 VAC, 40 VA, 100 VA -002 120 VAC from separate transformer 24 VAC, 100 VA, 24 VDC, -003 120 VAC 600 mA 24 VAC, 50 VA -004 240/220 VAC 2 x 24 VAC, 40 VA, 100 VA -005 240/220 VAC from separate transformer 24 VAC, 100 VA, 24 VDC, -006 240/220 VAC 600 mA

Table 10. Overview of CRT Series AC/DC current

transformer	primary side	max. AC current	max. DC current
CRT 2	230 VAC	2 A	500 mA
CRT 6	230 VAC	6 A	1300 mA
CRT 12	230 VAC	12 A	2500 mA

Fig. 24. Connection of EAGLEHAWK NX controller

RIN-APU24

The RIN-APU24 Uninterruptable Power Supply can be directly wired to an EAGLEHAWK NX controller. See RIN-APU24 Uninterruptable Power Supply – Mounting Instructions (EN0B-0382GE51) for a detailed wiring diagram.

Powering Panel Bus I/O Modules and Field Devices

The EAGLEHAWK NX, Panel Bus I/O modules, and field devices can be powered by either separate transformers (see Fig. 25, and Fig. 26) or by the same transformer.

NOTE: Use a min. distance of 10 cm between power cables and 0...10 V / sensor cables in order to prevent signal disturbances on the 0...10 V / sensor cables. See also section "Addressing Panel Bus I/O Modules" on page 35.

Table 9. 1450 series transformers data

Powering Field Devices and Panel Bus I/O Module via Separate Transformers

- 24 V actuator connected to, e.g., an analog output module
- Field device located 100 ... 400 m from the analog output module

Fig. 25. Power supply via a separate transformer

Powering Field Devices via Panel Bus I/O Module

- 24 V actuator connected to, e.g., an analog output module
- Field device located max. 100 m from the analog output module

Fig. 26. Power supply via Panel Bus I/O Module

CLNXxxx26xxx Connection Examples

For fusing specifications see section **"Fusing** Specifications" on page 20.

NOTE: Use a min. distance of 10 cm between power cables and 0...10 V / sensor cables in order to prevent signal disturbances on the 0...10 V / sensor cables.

Fig. 28. CLNXxxx26xxx connection example (with two XS830 Auxiliary Terminal Packages)

The XS830 and XS831 Auxiliary Terminal Packages are optional accessories which can be mounted onto the top and/or bottom of the EAGLEHAWK NX controller in order to equip them with additional terminals for the connection of, e.g., shields, sensors, GND, N, 230 V, or 24 V (but not earth!).

NOTE: Use a min. distance of 10 cm between power cables and 0...10 V / sensor cables in order to prevent signal disturbances on the 0...10 V / sensor cables.

Internal I/Os of the EAGLEHAWK NX

The CLNXxxx00xxx is not equipped with inputs or outputs. The following sub-sections thus apply only to the CLNXxxx14xxx and CLNXxxx26xxx.

Universal Inputs

The CLNXxxx26xxx is equipped with ten (CLNXxxx14xxx: four) universal inputs (UIs) configurable (in COACH NX). For information on the accuracy of the sensor inputs, their differential measurement error, the characteristics (i.e., resistances and resultant voltages in dependence upon temperature) of the various different sensor types which can be connected to them, and on the thresholds at which sensor failures are recognized, see section "Appendix 2" on pg. 53. **Table 11. Specifications of UIs**

criteria	value
voltage input	UI1-UI10: 0 10 VDC with pull-up resistor (default)
	UI1-UI8: 010 VDC w/o pull-up resistor
	UI1-UI8: 210 VDC w/o pull-up resistor
current input	 UI1-UI10: 0 10 VDC w/o pull-up resistor, external 499Ω resistor required to measure 020 mA
	 UI1-UI8: 210 VDC w/o pull-up resistor, external 499Ω resistor required to measure 420 mA
supported	 NTC10kΩ (-30+100 °C)
sensor types	 NTC20kΩ (-50+150 °C)
	 Slow binary input (static, dry-contact), 0.4 Hz
resolution	12-bit resolution
accuracy	±75 mV (0 10 V)
protection	against short-circuiting, 24 VAC

Fig. 29 Internal wiring of UI1-UI8 configured for voltage input (without pull-up resistor)

Fig. 30. Internal wiring of UI1-UI10 configured for input from NTC10kΩ / NTC20kΩ / voltage input (with pull-up resistor)

Slow Binary Input Specifications

When configured as slow binary inputs, the universal inputs of the EAGLEHAWK NX have the following specifications:

open contact	≥ 100 kΩ
closed contact	≤ 100 Ω

The polarity (normal = N.O. contact or reverse = N.C. contact) configuration defines if a logical 1 or a logical 0 is detected for a closed contact. This is done by selecting (in COACH NX) one of the following options:

normal (default)	closed external contact \rightarrow	state=1
	open external contact \rightarrow	state=0
reverse	closed external contact \rightarrow	state=0
	open external contact \rightarrow	state=1

Pulse Counter Specifications

Using COACH NX, the universal inputs of the EAGLEHAWK NX can be configured as pulse counters (totalizers).

If the duty cycle is 50% / 50%, the pulse counter supports up to 0.4 Hz. Counting is done on the rising edge.

Table 12. UIs of EAGLEHAWK NX configured as slow BIs

frequency	max. 0.4 Hz
pulse ON	min. 1.25 s
pulse OFF	min. 1.25 s
bounce	max. 50 ms

Analog Outputs

The CLNXxxx26xxx is equipped with four (CLNXxxx14xxx: two) analog outputs (AOs).

In the event of an application stop (e.g., during application download), the analog outputs assume the safety positions configured in COACH NX.

The analog outputs can be configured in COACH NX as binary outputs (with an output of 0 V or 10 V, as the case may be).

Table 13. Specifications of AOs

criteria	value		
	• 010 V (default)		
output type	• 210 V		
max. output range	0 11 VDC (1 mA)		
min. resolution	8 bit		
min. accuracy	± 150 mV		
max. wire length	400 m		
wire cross section	See Table 7 on pg. 20.		
protection	against short-circuiting, 24 VAC		

Binary Inputs / Pulse Counters

Both the CLNXxxx26xxx and the CLNXxxx14xxx are equipped with four binary inputs (static dry-contact inputs) / pulse counters (fast totalizers).

Table 14. Specifications of Bls

criteria	value	
input type	binary input (static dry-contact)pulse counter (fast totalizer)	
current rating (closed input)	2 mA	
open contact voltage	24 VDC	
protection	against short-circuiting, 24 VAC	

Binary Input Specifications

The binary inputs of the EAGLEHAWK NX are static drycontact inputs. This reduces the wiring effort, as it is then not necessary to distribute an auxiliary voltage signal.

open contact	≥ 3000 Ω (24 VDC on BI terminal)
closed contact	\leq 500 Ω (short-circuit current: 2.0 mA)

The polarity (normal = N.O. contact or reverse = N.C. contact) configuration defines if a logical 1 or a logical 0 is detected for a closed contact. This is done by selecting (in COACH NX) one of the following options:

normal (default)	closed external contact \rightarrow	state=1
	open external contact \rightarrow	state=0
101/0100	closed external contact \rightarrow	state=0
leverse	open external contact \rightarrow	state=1

Pulse Counter Specifications

Using COACH NX, the binary inputs of the EAGLEHAWK NX can be configured as pulse counters (fast totalizers) for operation in conjunction with devices equipped with an open collector output.

If the duty cycle is 50% / 50%, the pulse counter supports up to 15 Hz. Counting is done on the rising edge.

Table 15. Bls of EAGLEHAWK NX configured as fast totalizers

frequency	max. 15 Hz		
pulse ON	min. 25 ms		
pulse OFF	min. 25 ms		
bounce	max. 5 ms		

Fig. 31. Internal wiring of BI

Binary Outputs

The EAGLEHAWK NX features eight (CLNXxxx26xxx) or four (CLNXxxx14xxx) binary outputs arranged in two blocks (BO1...4 and BO5...8, respectively).

Risk of electric shock or equipment damage! Low voltage and line voltage must not be wired within the same block.

In the event of an application stop (e.g., during application download), the binary outputs assume the safety positions configured in COACH NX.

The polarity (normal = N.O. contact or reverse = N.C. contact) configuration defines if a relay is open or closed, depending upon whether there is a logical 1 or a logical 0. This is done by selecting (in COACH NX) one of the following options:

normal (dafault)	state=1 \rightarrow	relay contact is closed
normal (delauit)	state=0 \rightarrow	relay contact is opened
rovoroo	state=0 \rightarrow	relay contact is closed
Teverse	state=1 \rightarrow	relay contact is opened

Table 16. Relay specifications of the EAGLEHAWK NX

	block 1		block 2
	BO13	BO4	BO58
contact volt. AC	5253 V	5253 V	5253 V
contact volt. DC	530 V	2030 V	530 V
max. contact cur- rent AC (resistive)	3 A	10 A	3 A
max. contact cur- rent AC (induct.)	0.3 A*	10 A	0.3 A*
max. contact cur- rent AC (induct.)	2 A**	10 A	2 A**
max. contact cur- rent DC	3 A	7 A	3 A
min. load	100 mA / 5 VDC	40 mA / 24 VDC	100 mA / 5 VDC
* typically 250,000 cycles; ** typically 50,000 cycles			

NOTE: The total max. sum load for all binary outputs (BO1...8) equals 14 A.

NOTE: Binary output 4 supports the switching of high in-rush currents (e.g., motors, incandescent lights, etc.). The max. allowed switch current is 80 A for a duration of max. 20 ms.

ENGINEERING, COMMISSIONING

Please refer also to CentraLine NX BACnet Utilities Driver -User Guide (Product Literature No.: EN2Z-1020GE51) for detailed information.

Required Preparations

In order to access (with a laptop or PC) the EAGLEHAWK NX controller via Ethernet/IP for the first time, the default passwords are used. For IP connections, you may employ any one of the following two options:

Option 1: USB 2.0 Device (recommended)

This USB 2.0 Device interface is the recommended interface for downloading applications and firmware via COACH NX. An "A-Male to B-Male" USB cable is required.

Fig. 32. A-male to B-male USB cable

For access via USB, the EAGLEHAWK NX controller has a permanent default IP address 192.168.255.241. Your PC's IP address must match the EAGLEHAWK NX controller's default IP address subnet: We recommend using DHCP or "Obtain an automatic IP address".

Option 2: Standard Ethernet Interface

The default IP address of Ethernet interface 1 is: 192.168.200.20 and the default IP address of Ethernet interface 2 is: 192.168.201.20

In any case, your PC's IP address must match the EAGLEHAWK NX controller's default IP address subnet (255.255.255.0).

Behavior of Outputs during Download

Table 17. Behavior of outputs during firmware download /

analog, binary, and floating outputs	output behavior during firmware download	output behavior during application download
outputs of Panel I/O modules (CLIOP82x)	As soon as "receive heartbeat" (the value of which CANNOT be altered using COACH NX) expires, outputs go to safety position.	As soon as "receive heartbeat" (the value of which CANNOT be altered using COACH NX) expires, outputs go to safety position.
outputs of LonWorks I/O modules (CLIOL82x)	As soon as "receive heartbeat" (the value of which can be altered using COACH NX) expires, outputs go to safety position.	As soon as "receive heartbeat" (the value of which can be altered using COACH NX) expires, outputs go to safety position.
onboard I/Os	After the configured time-out, go to safety position.	After the configured time-out, go to safety position.

NOTE: These behaviors were determined using a test application with a cycle time of 10 seconds. A value update was triggered every 10 seconds.

EXTRA PARTS

Table 18. Extra parts				
	order no.	description		
, , , , , , , , , , , , , , , , , , ,	XS830	Set of ten terminals. Each package consists of two groups of nine internally connected push-in terminals, for distributing signals / power.		
	XS831	Set of ten terminals. Each package consists of two groups of four pairs of push-in terminals (each with a 499 Ω resistor), for converting 020 mA signals into 010 VDC signals, and one push-in ground terminal per group.		
	TPU-11-01	Removable terminal plugs, push-in type; complete set of 3 plugs (for terminals 1, 2, 24-32); for the CLNXxxx00xxx.		
	TPU-45-01	Removable terminal plugs, push-in type; complete set of 9 plugs (for terminals 1 - 47); for the CLNXxxx14xxx and CLNXxxx26xxx.		
	MVC-80-AC1	Terminal cover (color: RAL9011); package of ten.		
	MVC-80-AC2	Front door mounting accessory (color: RAL9011); package of 10.		
<u>EPEPEPEPEPEPEP</u>	MVC-40-AC3	Strain relief; package of ten.		

SOFTWARE LICENSES AND UPGRADES

model	License content / upgrade license	
CLNXEH00ND100A		
CLNXEH14ND100A	100 integration points + 255 Panel Bus / onboard I/O points + 1 st year of Software Maintenance	
CLNXEH26ND100A		
CLNXEHS00ND100A		
CLNXEHS14ND100A	100 integration points / Onboard I/O points	
CLNXEHS26ND100A		
CLNXEHSERIES00ND	N/A	
CLNXEHSERIES14ND	N/A	
CLNXEHSERIES26ND	N/A	
CLNXEH00D100A		
CLNXEH14D100A	100 integration points + 255 Panel Bus / onboard I/O points + 1 st year of Software Maintenance Agreement	
CLNXEH26D100A		
CLNXEHS00D100A		
CLNXEHS14D100A	100 integration points / Onboard I/O points	
CLNXEHS26D100A		
CLNXEHSERIES00D	N/A	
CLNXEHSERIES14D	N/A	
CLNXEHSERIES26D	N/A	
CLNXEHPB100UP	+102 Panel Bus / onboard I/O points upgrade	
CLNXEHPB255UP	+255 Panel Bus / onboard I/O points upgrade	
CLNXEHRBAC250UP	+250 Honeywell BACnet points (for BACnet room devices, e.g., MERLIN / CPO-R) upgrade	
CLNXEHRLON250UP	+250 Honeywell points (for LONWORKS room devices, e.g., SERVAL / Excel 10) upgrade	
CLNXEH-DEVICE-UP-1	+50 open points upgrade	
CLNXEH-DEVICE-UP10	+500 open points upgrade	
CLNXEH-DEVICE-UP25	+1250 open points upgrade	
CLNXEH-DEVICE-UP50	+2500 open points upgrade	

NOTE: For more details on the licenses, please refer to the Release Bulletin.

PANEL BUS CONNECTION

The EAGLEHAWK NX controller features two RS485 interfaces to which Panel Bus modules can be connected: RS485-1 (consisting of push-in terminals 24 [GND-1], 25, and 26) and/or RS485-2 (consisting of push-in terminals 29, 30, and 31 [GND-2]).

NOTE: GND-2 is internally connected with 24V-0 (terminal 1)

Overview of Panel Bus I/O Modules

Fig. 33. Overview of Panel Bus I/O Modules

Panel Bus Considerations

• RS485-1 (isolated)

- Max. Panel Bus length:
 - 40 meters. Any type of cabling and topology (including star and loop topology) possible. No additional end termination permitted.
 - 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10). Mandatory twisted-pair or telephone cable and daisy chain topology. The EAGLEHAWK NX must be positioned at one end of the Panel Bus, and an end termination (120 Ω) at the other end. Further, the three-position slide switch (see Fig. 13 on pg. 9) must be set to "END."

RS485-2 (non-isolated)

- Max. Panel Bus length:
 - 40 meters. Any type of cabling and topology (including star and loop topology) possible. No additional end termination permitted.
 - \circ 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10). Mandatory twisted-pair or telephone cable and daisy chain topology. The EAGLEHAWK NX controller must be positioned at one end of the Panel Bus, and an end termination (120 Ω) at the other end.
- Must not extend beyond a single building or building floor
- Max. no. of Panel Bus I/O modules per RS485 interface
 - Max. no. of Panel Bus I/O modules of a given model: 16
 - Total max. no. of Panel Bus I/O modules: 64
- Max. no. of Panel Bus I/O modules per EAGLEHAWK NX
 - Max. no. of Panel Bus I/O modules of a given model: 32
 - Total max. no. of Panel Bus I/O modules: 128
- Max. no. of hardware I/O points per EAGLEHAWK NX: 1000 (given a polling rate of 2 seconds; see also section "Controller Performance" on pg. 48)

Refer to CentraLine I/O Modules - Installation & Commissioning Instructions (EN1Z-0973GE51) for more information about connection, current requirements, power supply, overvoltage protection, cable specifications, fusing, effects of manual overrides, etc. of Panel Bus I/O modules and field devices connected to them.

Connecting EAGLEHAWK NX via its RS485-1 Interface to a Panel Bus

NOTE: When connecting an EAGLEHAWK NX via its RS485-1 to a Panel Bus I/, it is recommended that the slide switch be set to "END."

Fig. 34. Connecting an EAGLEHAWK NX controller via its RS485-1 interface to a Panel Bus (single transformer)

Fig. 35. Connecting an EAGLEHAWK NX controller via its RS485-1 interface to a Panel Bus (two transformers)

Connecting EAGLEHAWK NX via its RS485-2 Interface to a Panel Bus

Fig. 36. Connecting an EAGLEHAWK NX controller via its RS485-2 interface to a Panel Bus (single transformer)

Fig. 37. Connecting an EAGLEHAWK NX controller via its RS485-2 interface to a Panel Bus (two transformers)

Addressing Panel Bus I/O Modules

Each Panel Bus I/O Module must be addressed manually using its HEX switch (S2). The HEX switch setting is defined using the COACH NX engineering tool.

Fig. 38. Location of HEX switch on Panel Bus I/O Module

NOTE: A HEX switch setting of "0" corresponds to an address in COACH NX of "1," a setting of "1" corresponds to an address of "2," and so on.

During commissioning, a max. of 16 Panel Bus I/O Modules of each type (AI, DO, etc.) can be assigned addresses. In doing so, no two modules of the same type (e.g., no two Analog Input Modules, no two Digital Output modules, etc.) may be assigned the same address. See also Fig. 39.

Fig. 39. HEX switch setting and corresponding address

Failing to observe this requirement will cause a "Fail [date] timeout" error message to appear in the "Health" column, and the device status "down" to appear in the "Status" column. This same error message will likewise appear if an address is assigned to a module with which the controller cannot, for any reason (e.g., due to defective wiring, or because the module has not been physically installed, etc.), communicate.

Automatic Updating of Panel Bus I/O Module Firmware

The firmware of the Panel Bus I/O modules is part of the EAGLEHAWK NX firmware. The EAGLEHAWK NX controller will thus automatically update the firmware of the Panel Bus I/O modules as soon as it detects an older version in them.

Cable Specifications Panel Bus I/O Modules

When checking the length of the power supply cable, the connection cables to all Panel Bus I/O Modules must be taken into account.

Table 20	Power	supply	cable	specifications
----------	-------	--------	-------	----------------

max. length	3 m (from transformer to final module)
cross section	min. 0.75 mm ² (AWG 18)

EIA 485 Cable Specifications

The following cable specification is valid for all EIA 485 buses (e.g., Panel Bus, Modbus, and BACnet MS/TP).

Table 21. EIA 485 cable specifications

max. length	1200 meters (9.6 – 78.8 kbps) or 800 meters (115.2 kbps).
cable type	twisted pair, shielded (foil or braided shields are acceptable)
characteristic impedance	100130 Ω
distributed capacitance between conductors	Less than 100 pF per meter (30 pF per foot)
distributed capacitance between conductors and shield	Less than 200 pF per meter (60 pF per foot)

The following cables fulfill this requirement:

- AWG 18;
- shielded, twisted pair cable J-Y-(St)-Y 2 x 2 x 0,8;
- CAT 5,6,7 cable (use only one single pair for one bus);
- Belden 9842 or 9842NH.

Tuning Panel Bus Communication

The default polling interval for all Panel Bus points is set to "normal = 10s". Data from the field is thus updated every 10s. Write commands are sent without time delay.

It is recommended that you update the polling interval of those points requiring more-frequent updating (see Fig. 40). *IMPORTANT*

For EAGLEHAWK NX, the fastest poll rate is 200 milliseconds.

Do NOT set a faster poll rate, as this may overload the CPU in larger systems.

• Nav	Property Sheet	
He O X O My Network	PanelbusNetwork (Panelbus	s Network)
	🗎 Status	{ok}
My Host: GE51LT6Y51Q72.global.ds.honeywell.com (test)	Enabled	🔵 true 🔍
192.168.1.140 (Panelbus)	Fault Cause	
192.168.1.141	Health	Ok [05-Jul-18 8:50 AM GMT]
	Alarm Source Info	Alarm Source Info
Platform	Monitor	Panelbus Ping Monitor
TTT Platform	X Tuning Policies	Tuning Policy Map
🔝 🎽 Station (Test_EH4_Panel_LON_Modbus)		Basic Roll Scheduler
Alarm	Poll Enabled	true
	Fast Rate	00000h 00m 01.000s 🚽 [1ms-+inf]
Services	Normal Rate	00000h 00m 10.000s 🚽 [1ms-+inf]
Drivers	Slow Rate	00000h 01m 00.000s 킢 [1ms-+inf]
NiagaraNetwork	Statistics Start	04-Jul-2018 01:00 PM GMT
👻 😁 PanelbusNetwork	Average Poll	87.13ms
CLIOP821_2	🗎 Busy Time	0% (10sec/71402sec)
CLIOP821_16	Total Polls	122 over 10sec
ConNetwork	Dibs Polls	0% (1/122)
ModbusAsyncNetwork	Fast Polls	0% (0/122)
OnboardIONetwork	Normal Polls	99% (121/122)
Apps	Slow Polls	0% (0/122)
Test	Dibs Count	current=0 average=0
Files	Fast Count	current=0 average=0
Hierarchy	Normal Count	current=0 average=0
History	Slow Count	current=0 average=0
I92.168.200.40	Fast Cycle Time	average = 1000ms
	Normal Cycle Time	average = 1016ms
	Slow Cycle Time	average = 1000ms

Fig. 40. Editing the standard polling interval in "Poll Scheduler" of Property Sheet of PanelbusNetwork

You can assign different poll intervals to individual points in the Panel Bus Point Discovery Dialog (see Fig. 41).

• Nav	>>> Panelbus Point Discovery	
H O X S My Network	Discovered	
h O My Host : GES11 TEVS1072 elobal de honesovell com (test)	Io Type Address	
 My Host: GESILTEN'S1Q72_global.ds.honeywell.com (test) 192.168.1.140 (Panelbus) 192.168.1.141 192.168.1.141 192.168.1.141 192.168.1.141 192.168.1.141 192.168.1.150 (Test_EH4_Panel_LON_Modbus) For Platform 100 Config 200 Con	Analog Input 2(2/12 GND) Analog Input 2(2/12 GND) Analog Input 3(3/13 GND) Analog Input 4(4/1 Analog Input Add Add Analog Input Analog I	X elbus/
	Database Name Control Point by I (2/11 GRD) Imput Config	
	Config Send On Delta 0,0 (0,0-25,5) Offset 0,0 (-5,0-5,0) Sensor Fail Imvalid Imvalid Imvalid Imvalid Value 0,0	
	Poll Frequency Normal Cancel	>

Fig. 41. Assigning different poll intervals to individual points in the Panel Bus Point Discovery Dialog

Field Devices

Depending on the distance from the controller, field devices can be supplied with power by the same transformer used for the Panel Bus I/O Modules, or by a separate transformer, using cables as specified in Table 22.

Table 22.	Power /	communication	cable	specifications
	1 0 11 01 /	oommunoution	JUNIO	opeoniounono

	cross-sectional area		
type of signal	≤ 100 m (Fig. 26) single transformer	≤ 400 m (Fig. 25) sep. transformers	
24 VAC power	1.5 mm ² (16 AWG)	not allowed for > 100 m (300 ft)	
010 V signals	0.081 – 2.08 mm² (28 – 14 AWG)		

For wiring field devices, see section "Powering Panel Bus I/O Modules and Field Devices" on page 22.

Routing Cables to Field Devices

Route low-voltage signal and output cables to field devices separately from mains cables.

 Table 23. Minimum distances to power mains cables

cable	min. distance
shielded	10 mm (0.4 in.)
unshielded	100 mm (4 in.)

All low-voltage signal and output cables should be regarded as communication circuits in accordance with VDE 0100 and VDE 0800 (or NEC or other equivalent).

- If the general guidelines for cable routing are observed, it is not necessary to shield field device signal and power supply cables.
- If, for whatever reason, the routing guidelines cannot be observed, the field device signal and power supply cables must be shielded.
 - Shielding of cables leading to field devices must be grounded only at one end.
 - Do not connect the shield to the EAGLEHAWK NX controller.

LONWORKS COMMUNICATIONS

General Information

The EAGLEHAWK NX can be connected to LONWORKS networks. This requires the use of an IF-LON (see section "IF-LON" below), which is then plugged into to the EAGLEHAWK NX controller's USB 2.0 Host Interface (see also section "USB 2.0 Host Interface" on pg. 7).

This permits individual EAGLEHAWK NX controllers to be connected / disconnected from the LONWORKS network without disturbing the operation of other devices.

The LONWORKS network is insensitive to polarity, eliminating the possibility of installation errors due to miswiring.

Different network configurations (daisy-chain, loop, and star configurations, or any combination thereof) are possible (see also Excel 50/500 LONWORKS Mechanisms Interface Description, EN0B-0270GE51).

Connecting to a LONWORKS Network

Do not bundle wires carrying field device signals or LONWORKS communications together with high-voltage power supply or relay cables. Specifically, maintain a min. separation of 3 inches (76 mm) between such cables. Local wiring codes may take precedence over this recommendation.

IMPORTANT

Try to avoid installing in areas of high electromagnetic noise (EMI).

Cable Types

The unit must be wired to the LONWORKS network using either • level IV 22 AWG (Belden part number 9D220150)

or

 plenum-rated level IV 22 AWG (Belden part number 9H2201504) non-shielded, twisted-pair, solid-conductor wire.

When possible, use Honeywell AK3781, AK3782, AK3791, or AK3792 cable (US part numbers). See Excel 50/5000 LONWORKS Mechanisms, EN0B-0270GE51, for details, including maximum lengths.

Use wire with a minimum size of 20 AWG (0.5 $\rm mm^2)$ and a maximum size of 14 AWG (2.5 $\rm mm^2).$

IF-LON2

Optionally, communication with physical I/O modules, with room and zone controllers, and with CentraLine PANTHER, TIGER, and LION controllers can utilize LonTalk.

The IF-LON is equipped with a free-topology transceiver (FTT10A) for communication (at a data transmission rate of 78 kbps) on LONWORKS® networks (using the LonTalk protocol).

The LONWORKS network is insensitive to polarity, eliminating the possibility of installation errors due to miswiring. Different network configurations (daisy-chain, loop, and star configurations, or any combination thereof) are possible. See Excel 50/5000 LONWORKS Mechanisms (EN0B-0270GE51) for details.

Fig. 42. IF-LON2

See also IF-LON2 – Mounting Instructions (Product Literature no.: MU1B-0545GE51).

Depending upon the chosen network configuration, one or two terminations may be required.

The following LONWORKS termination module is available:

 LONWORKS connection / termination module (mountable on DIN rails and in fuse boxes), order no.: XAL-Term2

Fig. 43. LONWORKS connection and termination module

BACNET MS/TP BUS CONNECTION

The EAGLEHAWK NX controller features two RS485 interfaces to which BACnet MS/TP devices can be connected: RS485-1 (consisting of push-in terminals 24 [GND-1], 25, and 26) and/or RS485-2 (consisting of push-in terminals 29, 30, and 31 [GND-2]).

NOTE: GND-2 is internally connected with 24V-0 (terminal 1)

BACnet MS/TP Bus Considerations

- RS485-1 (isolated)
 - Max. BACnet MS/TP bus length: 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10).
 - Use only shielded, twisted-pair cable and daisy-chain topology.
 - Must conform to EIA-RS485 cabling guidelines (see section "EIA 485 Cable Specifications" on pg. 35).
- RS485-2 (non-isolated)
 - Max. BACnet MS/TP bus length: 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10).
 - Use only shielded, twisted-pair cable and daisy-chain topology.
 - Ground noise should not exceed the EIA-485 common mode voltage limit.
 - Must conform to EIA-RS485 cabling guidelines.
 - Should not extend beyond a single building.

Connecting EAGLEHAWK NX via its RS485-1 Interface to a BACnet MS/TP Bus

With regards to Fig. 44 through Fig. 46, please note the following:

NOTE: Always power each EAGLEHAWK NX controller and the connected BACnet MS/TP modules via separate transformers.

- NOTE: For "L," see section "RS485 Standard" on pg. 10.
- **NOTE:** If any of the devices are electrically isolated, it is recommended that those devices be connected to signal ground. See section "RS485 Standard" on pg. 10.

Example 1: Single EAGLEHAWK NX Controller and Connected BACnet Modules (with inserted termination resistor)

Fig. 44. Connection of a single EAGLEHAWK NX controller via its RS485-1 interface to a BACnet MS/TP Bus

The termination resistor must be inserted directly into the terminals of the last BACnet MS/TP module.

Example 2: Multiple EAGLEHAWK NX Controllers and Connected BACnet Modules

Fig. 45. Connection of multiple EAGLEHAWK NX controllers via their RS485-1 interfaces to a BACnet MS/TP Bus

Example 3: Multiple EAGLEHAWK NX Controllers and Connected BACnet Modules (with inserted termination resistor)

Fig. 46. Connection of multiple EAGLEHAWK NX controllers via their RS485-1 interfaces to a BACnet MS/TP Bus

The termination resistor must be inserted directly into the terminals of the last BACnet MS/TP module (in this example, that is the rightmost EAGLEHAWK NX, the 3-position slide switch of which has been set to "BIAS.")

Connecting EAGLEHAWK NX via its RS485-2 Interface to a BACnet MS/TP Bus

With regards to Fig. 47 and Fig. 48, please note the following:

- NOTE: Always power each EAGLEHAWK NX controller and the connected BACnet MS/TP modules via separate transformers.
- NOTE: For "L," see section "RS485 Standard" on pg. 10.
- **NOTE:** If any of the devices are electrically isolated, it is recommended that those devices be connected to signal ground. See section "RS485 Standard" on pg. 10.
- **NOTE:** Between devices equipped with non-isolated RS485 bus interfaces, potential differences of max. ±7 V are allowed. Further, this bus should not extend beyond a single building.

Example 1: Single EAGLEHAWK NX Controller and Connected BACnet Modules (with inserted termination resistor)

Fig. 47. Connection of a single EAGLEHAWK NX controller via its RS485-2 interface to a BACnet MS/TP Bus

The termination resistor must be inserted directly into the terminals of the last BACnet MS/TP module.

Example 2: Multiple EAGLEHAWK NX Controllers and Connected BACnet Modules

Fig. 48. Connection of multiple EAGLEHAWK NX controllers via their RS485-2 interfaces to a BACnet MS/TP Bus

MODBUS CONNECTION

The EAGLEHAWK NX controller supports both Modbus RTU master and Modbus RTU slave functionality. Modbus slaves can be connected to either or both of the two onboard RS485 interfaces: RS485-1 (consisting of push-in terminals 24 [GND-1], 25, and 26) or RS485-2 (consisting of push-in terminals 29, 30, 31 [GND-2]). **NOTE:** GND-2 is internally connected with 24V-0 (terminal 1)

Modbus Considerations

- RS485-1 (isolated)
 - Max. Modbus length: 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10).
 - Use only shielded, twisted-pair cable and daisy-chain topology.
 - Must conform to EIA-RS485 cabling guidelines (see section "EIA 485 Cable Specifications" on pg. 35).
- RS485-2 (non-isolated)
 - Max. Modbus length: 1200 meters (9.6 78.8 kbps) or 800 meters (115.2 kbps) (see also section "RS485 Standard" on pg. 10).
 - Use only shielded, twisted-pair cable and daisy-chain topology.
 - Ground noise should not exceed the EIA-485 common mode voltage limit.
 - Must conform to EIA-RS485 cabling guidelines (see section "EIA 485 Cable Specifications" on pg. 35).
 - Should not extend beyond a single building.
- Max. no of Modbus devices per EAGLEHAWK NX RS485 interface: 32 (including the EAGLEHAWK NX, itself, which is counted twice)

Connecting EAGLEHAWK NX via its RS485-1 Interface to a Modbus

With regards to Fig. 49, please note the following:

- NOTE: Always power each EAGLEHAWK NX controller and the connected Modbus slaves via separate transformers.
- NOTE: For "L," see section "RS485 Standard" on pg. 10.
- **NOTE:** If any of the devices are electrically isolated, it is recommended that those devices be connected to signal ground. See section "RS485 Standard" on pg. 10.

Example: EAGLEHAWK NX Modbus Master Controller and Connected Modbus Slaves (with inserted termination resistor)

Fig. 49. Connection of an EAGLEHAWK NX Modbus master controller via its RS485-1 interface to a Modbus with slaves

The termination resistor must be inserted directly into the terminals of the last Modbus slave.

NOTE: In this example, any or all of the Modbus RTU slaves depicted here can be EAGLEHAWK NX Modbus RTU slaves. In such cases, an EAGLEHAWK NX Modbus RTU slave positioned at the end of the Modbus (as "Modbus Module #N") must have its 3-position slide switches set to "End" (see Fig. 16) (the insertion of the aforementioned termination resistor is then unnecessary) and any EAGLEHAWK NX Modbus RTU slaves positioned elsewhere on the Modbus must have their 3-position slide switch set to "Mid" (see Fig. 14).

Connecting EAGLEHAWK NX via its RS485-2 Interface to a Modbus

With regards to Fig. 50, please note the following:

- NOTE: Always power each EAGLEHAWK NX controller and the connected Modbus slaves via separate transformers.
- NOTE: For "L," see section "RS485 Standard" on pg. 10.
- **NOTE:** If any of the devices are electrically isolated, it is recommended that those devices be connected to signal ground. See section "RS485 Standard" on pg. 10.
- **NOTE:** Between devices equipped with non-isolated RS485 bus interfaces, potential differences of max. ±7 V are allowed. Further, this bus should not extend beyond a single building.

Example: EAGLEHAWK NX Modbus Master Controller and Connected Modbus Slaves (with inserted termination resistor)

Fig. 50. Connection of an EAGLEHAWK NX Modbus master controller via its RS485-2 interface to a Modbus with slaves

The termination resistor must be inserted directly into the terminals of the last Modbus slave.

NOTE: In this example, a maximum of one of the Modbus RTU slaves can be an EAGLEHAWK NX Modbus RTU slave – which must then be positioned at the end of the Modbus (as "Modbus Module #N"); the insertion of the aforementioned termination resistor is then unnecessary.

M-BUS CONNECTION

The EAGLEHAWK NX controller supports M-Bus Master functionality via its onboard RS232 / RJ45 socket. It uses standard PW3/PW20/PW60 converters to connect to the M-Bus devices.

M-Bus Considerations

Max. no. of M-Bus devices per EAGLEHAWK NX: 60.

Bus Length

- Max. M-Bus length: 350 meters from PW3 / PW20 / PW60, at communication rates of 9.6 kbps or slower with shielded, twisted pair cable: J-Y-(St)-Y 2 x 2 x 0,8.
- The M-Bus can be extended to 1,000 meters, depending upon the communication rate, and provided that the following electrical limitations are observed:
 - Bus voltage must at no point fall below 12 VDC
 - Maximum cable capacitance of 180 nF

For bus length extension, M-Bus repeaters can be used, but have not been tested by Honeywell. Hence, it is the responsibility of the installing / commissioning personnel to ensure proper functioning.

Wiring Topology

M-Bus meters are connected to the bus cable in parallel.

Fig. 51. Allowed M-Bus wiring topology

Cabling EAGLEHAWK NX to PW3/PW20/PW60

- Use the XW586 cable between the RS232 / RJ45 socket of the EAGLEHAWK NX and the PW adapters.
- The XW586 cable has a length of 1.8 m, and the pin-out listed in Table 25.
- In case a third-party cable is used instead of the XW586 cable, the third-party cable must have a max. length of 15 meters and a max. cable capacitance of 2,500 pF.

Table 24. EAGLEHAWK NX RS232 / RJ45 socket specifications

RJ45 plug, pin no.	RS232 function
1	
2	RxD
3	TxD
4	
5	GND
6	
7	
8	

Fig. 52. EAGLEHAWK NX RS232 / RJ45 socket

Table 25. RS232-to-PW cable specifications

RJ45 plug, pin no.	RS232 function	9-Pin sub-D connector pin no.
1	DCD	1
2	RxD	2
3	TxD	3
4	DTR	4
5	GND	5
6	DSR	6
7	RTS	7
8	CTS	8
	Not used	9

Fig. 53. XW586 power / communication cable details

Cabling PW3/PW20/PW60 to M-Bus

- Use shielded, twisted pair cable J-Y-(St)-Y 2 x 2 x 0,8.
- Shielding is especially recommended when the M-Bus cable is installed in areas with expected or actual electromagnetic noise. Avoiding such areas is to be preferred.
- Connect the shield to a noise-free earth ground only once per M-Bus connection.
- Power the EAGLEHAWK NX controller and the PW M-Bus Adapter with separate transformers – see WARNING below.
- **NOTE:** If, alternatively, only a single transformer is available, when connecting a laptop, PC, web browser, CL-Touch, or 3rd-party touch panel to the USB 2.0 Device Interface on the front of the EAGLEHAWK NX controller, use an optical isolator for the USB connection or substitute an M-Bus Mikro-Master USB (Relay GmbH, D-33106 Paderborn) for the PW M-Bus Adapter.

M-Bus Connection Procedure

1. Install the PW M-Bus Adapter on DIN rail. Insert a screwdriver into the slot in the DIN rail clamp on the underside of the PW and pry downward to loosen clamp until the unit snaps onto the rail.

Fig. 54. Mounting of PW (PW3 shown here)

 Connect the M-Bus devices to the PW M-Bus Adapter. All M+ and M- terminals are connected in parallel in the PW M-Bus Adapter.

Fig. 55. PW M-Bus adapter connections

 Connect the PW M-Bus Adapter to the RS232 / RJ45 socket of the EAGLEHAWK NX using the XW586 cable.

Fig. 56. Connecting the EAGLEHAWK NX to the PW M-Bus adapter

4. Connect 24 V power to the M-Bus Adapter.

Risk of electric shock or equipment damage!

Due to the risk of short-circuiting (see Fig. 23), it is strongly recommended that the EAGLEHAWK NX controller be supplied with power from a dedicated transformer. However, if the EAGLEHAWK NX controller is to be supplied by the same transformer powering other controllers or devices (e.g., the PW M-Bus Adapter), care must be taken to ensure that correct polarity is observed.

Fig. 57. Connecting power to the PW M-Bus adapter

CONTROLLER PERFORMANCE

The controller performance has been tested in two test scenarios.

NOTE: These are example scenarios. It is therefore, of course, possible for you to use any other mix of Panel Bus points and BACnet MS/TP points as long as the maximum number of hardware I/O points (see section "Panel Bus Considerations" on pg. 32) is observed.

Table 26. Performance test 1	simple statement for the COV up	dates, no HVAC application)

	no. of modules	no. of hardware I/O points	points in PX pages	freq. of value changes	histories enabled	CPU usage	test result
Panel Bus (via RS485-1)	46 ^{(A}	491	491 ^{(B}	2 sec (poll rate)	1	30% (occasionally:	OK for non-critical applications ^{(C}
BACnet MS/TP (via RS485-2)	13	559	559 ^{(D}	2 sec (COV)	500	50%)	

(A 9x CLIOP821A, 9x CLIOPR822A, 9x CLIOP823A, 9x CLIOPR824, 5x CLIOPR825, 5x CLIOP830A

^{(B} Four (4) PX pages: AI, AO, BI, and BO points each in a dedicated PX page per point type

^{(C} About 0.5% of the BACnet MS/TP point updates are occasionally delayed.

^{(D} One (1) PX page with all points

Table 27. Performance test 2

	COV frequency	max. no. of COV updates per min. across RS485-1 and RS485-2 together	CPU usage	test result
BACnet MS/TP at 38,500 bps	4 sec	4,000	2535% (occasionally: 60%)	ОК

TROUBLESHOOTING EAGLEHAWK NX Controller Troubleshooting

The following LEDs of the EAGLEHAWK NX controller can be used for troubleshooting purposes:

- Power LED (green)
- Status LED (red)
- L1 and L2 LEDs (yellow)
- Tx (sending data on RS485-1) and Rx (receiving data on RS485-1) LEDs

Power LED (green) of EAGLEHAWK NX

Table 28. EAGLEHAWK NX controller power LED

case	power LED	meaning	remedy
1	ON	Normal operation.	No action necessary.
2	OFF	Power supply not OK.	 Check power supply voltage.
			 Check wiring.
			 If problem persists, replace hardware.

Status LED (red) of EAGLEHAWK NX

Table 29. EAGLEHAWK NX controller status LED

case	status LED	meaning	remedy
1	OFF after power-up	Normal operation.	No action necessary.
2	ON con- tinuously after	 Indicates an active alarm; is controlled by Niagara Alarm System; is configurable. 	 Try powering down and then powering up the EAGLEHAWK NX controller.
	power-up		 If problem persists, replace hardware.

L1 LED

Table 30. EAGLEHAWK NX controller bus L1 LED

case	bus LED	meaning	remedy
	L1		
1	ON con- tinuously after power-up	Normal operation; Daemon starting.	No action necessary.
2	Flashes constantly	Station starting; if L2 is also flashing, then the station has started.	No action necessary.
3	OFF	Severe software problems.	► Contact TAC.

L2 LED

Table 31. EAGLEHAWK NX controller bus L2 LED

case	bus LED	meaning	remedy
	L2		
1	ON con- tinuously after power-up	Platform has started / is reachable.	No action necessary.
2	OFF	Station is not running.	 Start station (enable auto start).
			► Contact TAC.
3	Flashing	Station has started.	No action necessary.

Tx and Rx LEDs

Table 32. EAGLEHAWK NX controller bus LEDs Tx and Rx

case	bus LEDs	meaning	remedy
1	Both Tx and Rx	Normal operation; RS485-1 is functioning	No action necessary.
are flashing	are flashing	propeny.	 In case of communication problems, check settings (communication rate, parity, etc.).
2	Both Tx and Rx are OFF	No communication on RS485-1.	 Switch ON communication on RS485-1. L1 should then flash. Further handling like case 4 (below).
3	Rx is flashing and Tx is OFF	Communication on RS485-1 has been switched OFF, but the EAGLEHAWK NX is receiving data from other controllers.	 Switch ON communication on RS485-1. If this proves unsuccessful, the hardware may be defective.
4	Tx is flashing and Rx is OFF	The EAGLEHAWK NX controller is attempting to establish communication on RS485-1, but there is no answer.	The communication rate (kbps) on RS485-1 has not been correctly set; other controllers on the bus may have been incorrectly assigned the same device number; wiring problem or hardware defect.

Panel Bus I/O Module Troubleshooting

Please refer to CentraLine I/O Modules - Installation & Commissioning Instructions (EN1Z-0973GE51) for more information about Panel Bus I/O module troubleshooting.

APPENDIX 1: EARTH GROUNDING EAGLEHAWK NX Systems and SELV

In order to avoid distribution of noise or earth ground potential differences over networks or other connections, the EAGLEHAWK NX controller is designed to be in compliance

with SELV (Safety Extra-Low Voltage). Furthermore, SELV offers the greatest possible safety against electrical impact.

To support SELV, all Honeywell external (CRT series) or internal transformers comply with standard EN60742. Earth grounding is therefore not recommended.

EAGLEHAWK NX Systems and Standard EN60204-1

However, if compliance with EN60204-1 is required, note the following:

General Information about EN60204-1

EN60204-1 defines electrical safety for a complete application / machine including controllers, sensors, actuators and any connected/controlled electrical device.

EN60204-1 requires controllers to be powered by PELV (Protective Extra-Low Voltage) and earth grounding of the secondary side of the used transformers or earth grounding of the system ground.

Earth grounding is prescribed to prevent unexpected start-up of connected rotating/moving machines due to an insulation fault and double earth grounding somewhere in the plant. In order to fulfill PELV (if earth grounding is prohibited), the use of an earth leakage monitor is also possible.

When is EN60204-1 Applicable to EAGLEHAWK NX Systems?

Safety against electrical impact

- EN60204-1 is not mandatory; this is because electrical safety is provided by the use of SELV and transformers according to standard EN60742.
- Safety against unexpected start-up of rotating/moving machines
 - If the application/plant does not contain machines that can be harmful to the operator due to an unexpected start-up, the standard EN60204-1 is not applicable.

If such machines are encountered, then EN60204-1 must be followed. Grounding is required.

Earth Grounding of EN60204-1 Applicable Systems

- **NOTE:** We strongly recommend that each CPU be supplied with electricity from its own dedicated transformer.
- If system protective earth grounding is planned, use a cable as short as possible for grounding: min. 1.5 mm² (16 AWG).
- ► For connection details, refer to the following examples.

Example 1

The following explains how to connect and earth multiple CPUs (e.g., multiple EAGLEHAWK NX controllers, PANTHERS, TIGERS, LIONS, etc. or any combination thereof) earth-grounded as per EN60204-1.

NOTE: Use a noise-free earth ground inside the cabinet.

- **NOTE:** If a field device that prohibits earth grounding is connected to the system ground, an isolation monitoring device must be used instead of earth grounding.
- Connect earth ground to the respective terminal of the CPU, see Fig. 59.

Fig. 58. Connecting and earthing multiple CPUs (RECOMMENDED USE OF SEPARATE TRANSFORMERS)

Example 2

When connecting multiple CPUs to a single transformer, it is imperative that the polarity of the power supply terminals of the CPUs and the polarity of the transformer always correspond (namely: 24V-0 of the transformer must always be connected to 24V-0 of the CPU, and 24V~ of the transformer must always be connected with 24V~ of the CPU).

Depending upon the individual CPU, the numbering of the corresponding two terminals may possibly deviate from the norm (which is usually "terminal 1 = 24V-0" and "terminal 2 = 24V~"). In the following example, CPU 3 has a deviating numbering and must be connected accordingly.

- **NOTE:** When using a single transformer for several CPUs, each CPU ground must be wired separately to the star-point.
- **NOTE:** If the field device transformer is physically far away from the CPUs, earth grounding must still be performed for the controller.
- **NOTE:** Use one star-point to split power for multiple CPUs and field devices.
- ► Connect earth ground to the proper terminal of the CPU.

Fig. 59. Connecting and earthing multiple CPUs

APPENDIX 2 Sensor Input Accuracy

The internal sensor inputs of the EAGLEHAWK NX controller support both NTC10k Ω and NTC20k Ω sensors (see also section "Universal Inputs" on page 26). The following table lists the typical minimum accuracies of the hardware and software for temperature sensors.

range	measurement error (excl. sensor characteristics)		
	NTC10kΩ sensors ⁽¹	NTC20kΩ sensors	
-5020 °C (-584 °F)	≤ 5.0 K	≤ 5.0 K	
-20 0 °C (-4 +32 °F)	≤ 1.0 K	≤ 1.0 K	
0 30 °C (32 86 °F)	≤ 0.5 K	≤ 0.3 K	
30 70 °C (86 158 °F)	≤ 0.5 K	≤ 0.5 K	
70 100 °C (158 212 °F)	≤ 1.0 K	≤ 1.0 K	
100 130 °C (212 266 °F)		≤ 3.0 K	
130 150 °C (266 302 °F)		≤ 5.5 K	
150 400 °C (302 752 °F)			
⁽¹ NTC10k Ω specified for -30 +100 °C, only.			

Table 33. Accuracies of internal NTC20kΩ sensor inputs of the EAGLEHAWK NX

NOTE: This is the accuracy of the internal sensor input (hardware + software [linearization]), only. This table does not include the characteristics of the sensors, themselves (see section "Sensor Characteristics" below). If a different sensor or sensor accuracy is required, one may instead use the inputs of, e.g., a connected Panel I/O module.

Recognition of Sensor Failure of Sensor Inputs

The thresholds at which sensor failures – i.e., sensor breaks (SB) and short-circuits (SC) – are recognized depends upon the given sensor type. In the event of a recognized sensor failure, the sensor inputs assume the safety values configured in COACH NX. Table 34 lists the measurement ranges and the corresponding thresholds for the recognition of sensor failure for the various different sensor types:

I/O configuration	measurement range	recognition thresholds
210 V	210 V / 420 mA (without pull-up)	SC: < 1.5 V / 3 mA; SB: no recognition
NTC10kΩ	-30 +100 °C	SC: < 20 Ω; SB: < -70 °C
NTC20kΩ	-50 +150 °C	SC: < 20 Ω; SB: < -70 °C

Table 34. Thresholds for short-circuit (SC) and sensor-break (SB) recognition

NOTE: In the case of temperatures lying *outside* the aforementioned ranges, the lowest/highest value *within* the range, instead, will be communicated. Thus, a temperature of -51 °C will be communicated as "-50 °C."

Sensor Characteristics

The characteristics (resistance in relation to temperature) of the sensors and the resultant voltage are listed on the following pages. The stated values do not include failures due to: sensor failures; wiring resistance or wiring failures; misreadings due to a meter connected to measure resistance or voltage at the input.

NTC 20 kΩ (same voltages for inputs of Panel Bus I/O Modules and onboard inputs of EAGLEHAWK NX)

-800 1959 8.78 6.0 51.1 6.20 7.0 44.8 6.10 1.37 480 1432 8.76 8.7 7.0 44.5 6.10 1.32 110 0.0 1.41 480 132 8.7 0.0 4.7 6.90 1.37 1.83 0.0 1.21 440 1073 8.71 10.0 3.55 7.0 4.61 130 0.57 1.40 450 110 39.5 7.0 4.61 130 0.57 1.40 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 100 2.70 2.80 0.90 110 1.80 0.80 1.80 0.80 1.80 0.80 <th< th=""><th>Temp. [°C]</th><th>Resistance [kΩ]</th><th>Terminal voltage [V]</th><th>Т</th><th>emp. [°C]</th><th>Resistance [kΩ]</th><th>Terminal voltage [V]</th><th></th><th>Temp. [°C]</th><th>Resistance [kΩ]</th><th>Terminal voltage [V]</th><th></th><th>Temp. [°C]</th><th>Resistance [kΩ]</th><th>Terminal voltage [V]</th></th<>	Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]	Т	emp. [°C]	Resistance [kΩ]	Terminal voltage [V]		Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]		Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]
480 1541 8.77 70 48.5 6.10 480 1320 8.76 8.0 4.60 0.0 4.60 100 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 4.60 0.0 0.238 1.20 0.76 1.60 0.28 0.21 1.10 0.63 0.24 0.238 0.70 0.66 0.238 0.70 0.66 0.225 0.70	-50.0	1659	8.78		6.0	51.1	6.20	1	62.0	4.18	1.41		118.0	0.64	0.252
440 143 143 143 145 140 340 587 120 356 7.70 346 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.5 0.71 120 0.43 0.21 120 0.43 0.21 120 0.43 0.21 120 0.43 0.21 120 0.43 0.11 120 0.43 0.11 120 0.43 0.11 120 0.43 <th< td=""><td>-49.0</td><td>1541</td><td>8.77</td><td></td><td>7.0</td><td>48.5</td><td>6.10</td><td></td><td>63.0</td><td>4.03</td><td>1.37</td><td></td><td>119.0</td><td>0.63</td><td>0.245</td></th<>	-49.0	1541	8.77		7.0	48.5	6.10		63.0	4.03	1.37		119.0	0.63	0.245
	-48.0	1432	8.76		8.0	46.0	6.00	1	64.0	3.88	1.32		120.0	0.61	0.238
4-60 129 8.74 10 36.0 120 36.0 120 36.0 120 36.0 12	-47.0	1331	8.75		9.0	43.7	5.90	1	65.0	3.73	1.28		121.0	0.59	0.231
44.60 1153 8.72 44.0 100 8.72 44.0 100 8.70 42.0 120 376 5.59 43.0 100 8.70 44.0 680 3.34 110 44.0 686 70 3.44 1.10 44.0 687 4.60 3.84 1.11 4.0 866 8.67 1.60 3.84 1.10 3.00 777 8.64 1.00 279 4.96 77.0 2.08 1.00 3.00 776 6.66 1.00 279 4.96 77.0 2.80 0.80 3.00 77 6.56 20.0 2.53 4.75 77.0 2.40 0.80 3.30 505 577 5.66 2.00 4.43 77.0 2.41 0.81 3.30 3.45 1.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40	-46.0	1239	8.74	1	0.0	41.6	5.80	1	66.0	3.59	1.24		122.0	0.57	0.225
	-45.0	1153	8.72	1	1.0	39.5	5.70		67.0	3.46	1.20		123.0	0.56	0.219
43.0 1000 8.70 42.0 328 8.69 41.0 869 9.67 41.0 869 9.67 41.0 869 9.67 43.0 777 8.64 70.0 60.0 8.62 33.0 777 8.64 73.0 60.0 8.62 33.0 777 8.64 73.0 60.0 8.62 33.0 778 8.64 73.0 60.0 8.62 33.0 767 8.64 23.0 77 8.64 23.0 77 8.64 23.0 77 8.64 23.0 78 8.49 24.0 24.0 24.0 24.0 24.0 24.0 23.0 74.3 77.0 24.0 23.0 74.3 25.0 36.0 17.4 25.0 8.17 24.0	-44.0	1073	8.71	1	2.0	37.6	5.59	1	68.0	3.34	1.16		124.0	0.54	0.213
420 932 8.69 410 898 867 420 811 8.66 420 811 8.66 430 757 8.64 320 706 8.62 330 706 8.62 330 766 8.62 330 660 8.60 330 505 8.52 330 505 8.52 330 505 8.52 330 505 8.52 330 505 8.52 330 443 8.47 220 220 4.43 240 389 8.41 250 20.0 4.22 330 159 3.71 380 364 8.38 250 320 4.53 330 159 3.71 380 165 182 0.676 330 159 3.71 880 1.66 <td>-43.0</td> <td>1000</td> <td>8.70</td> <td>1</td> <td>3.0</td> <td>35.7</td> <td>5.49</td> <td>1</td> <td>69.0</td> <td>3.21</td> <td>1.13</td> <td></td> <td>125.0</td> <td>0.53</td> <td>0.207</td>	-43.0	1000	8.70	1	3.0	35.7	5.49	1	69.0	3.21	1.13		125.0	0.53	0.207
44.0 869 8.67 40.0 811 8.66 39.0 757 8.84 37.0 660 8.62 37.0 666 8.62 37.0 666 8.62 35.0 577 8.54 32.0 650 8.54 32.0 505 8.54 32.0 57 8.64 33.0 505 8.52 33.0 505 8.52 33.0 508 8.54 32.0 473 8.49 22.0 23.0 4.53 30.0 415 8.44 22.0 18.1 7.4 28.0 386 8.41 27.0 382 8.41 27.0 382 9.0 16.6 3.81 30.0 15.9 3.71 8.50 1.76 0.804 2.20 2.80 8.61 1.82 0.676 3.30	-42.0	932	8.69	1	4.0	34.0	5.38		70.0	3.10	1.09		126.0	0.51	0.201
	-41.0	869	8.67	1	5.0	32.3	5.28		71.0	2.99	1.06		127.0	0.50	0.196
-38.0 757 8.84 -38.0 757 8.84 -38.0 757 8.84 -36.0 577 8.86 -33.0 557 8.84 -33.0 557 8.84 -33.0 557 8.84 -33.0 556 8.52 -31.0 443 8.47 -32.0 473 8.49 -33.0 556 8.52 -31.0 443 8.47 -32.0 473 8.49 -32.0 473 8.49 -32.0 473 8.44 -28.0 386 6.41 -27.0 3.42 8.35 -28.0 386 8.41 -27.0 3.42 8.35 -28.0 3.61 159 3.71 8.0 1.82 0.676 -24.0 286 8.21 -33.0 1.32 3.33 3.33 3.0	-40.0	811	8.66	1	6.0	30.8	5.17		72.0	2.88	1.02		128.0	0.49	0.191
-38.0 766 8.62 18.0 27.0 4.96 74.0 2.88 0.960 -36.0 617 8.58 19.0 2.86 4.85 76.0 2.48 0.960 -34.0 653 8.64 2.10 2.42 4.64 77.0 2.41 0.872 -33.0 505 8.52 2.30 4.53 78.0 2.24 0.818 -32.0 47.3 8.49 2.20 2.30 4.53 78.0 2.24 0.814 -30.0 4.45 8.44 2.50 2.00 4.71 70.72 133.0 0.42 0.66 -28.0 389 8.44 2.70 18.2 4.01 88.0 1.65 0.367 -28.0 32.1 8.52 2.00 17.7 18.4 1.82 4.01 88.0 1.65 0.66 -28.0 28.1 16.6 3.81 86.0 1.70 0.685 140.0 0.32 0.122	-39.0	757	8.64	1	7.0	29.3	5.07		73.0	2.78	0.991		129.0	0.47	0.186
-37.0 660 8.60 10.0 26.6 4.85 75.0 2.58 0.20 0.45 0.171 36.0 617 8.56 20.0 25.3 4.75 76.0 2.40 0.900 37.0 65.0 8.54 22.0 22.0 4.43 77.0 2.21 0.84 0.171 37.0 415 8.44 22.0 22.0 4.43 78.0 2.21 0.84 30.0 415 8.44 25.0 20.0 4.22 8.0 1.11 0.176 -28.0 380 8.41 27.0 18.2 20.0 1.42 80.0 2.17 0.724 -28.0 384 8.35 2.80 16.6 3.81 88.0 1.82 0.674 -28.0 384 8.25 3.0 1.52 3.62 88.0 1.65 0.685 -24.0 283 8.25 3.0 1.52 3.62 88.0 1.56 0.674 -23.0 266 8.21 3.0 1.52 3.62 88.0 1.56 0.657 -24.0 288 8.64 1.33 3.33 90.0 1.54 0.574 -220 266 <td>-38.0</td> <td>706</td> <td>8.62</td> <td>1</td> <td>8.0</td> <td>27.9</td> <td>4.96</td> <td></td> <td>74.0</td> <td>2.68</td> <td>0.960</td> <td></td> <td>130.0</td> <td>0.46</td> <td>0.181</td>	-38.0	706	8.62	1	8.0	27.9	4.96		74.0	2.68	0.960		130.0	0.46	0.181
-36.0 617 8.58 22.0 23.3 4.75 76.0 2.49 0.807 -34.0 539 8.56 21.0 24.2 4.64 77.0 2.41 0.872 -33.0 505 8.52 23.0 4.53 78.0 2.24 0.844 -30.0 413 8.47 22.0 2.3.0 4.53 78.0 2.24 0.844 -30.0 415 8.44 2.5.0 2.0.0 4.22 81.0 2.00 0.744 -30.0 416 8.38 2.8.0 1.66 3.81 8.20 1.66 3.81 -26.0 321 8.32 3.0 1.65 3.71 86.0 1.76 0.685 -22.0 2.80 8.17 3.0 1.42 0.33 0.33 0.33 -22.0 2.80 8.17 3.40 13.3 3.33 9.0 1.58 0.571 -20.0 2.21 8.08 1.14 0.578	-37.0	660	8.60	1	9.0	26.6	4.85		75.0	2.58	0.929		131.0	0.45	0.176
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-36.0	617	8.58	2	20.0	25.3	4.75		76.0	2.49	0.900		132.0	0.43	0.171
-340 539 6.54 22.0 23.0 4.53 -330 505 6.52 22.0 4.43 80.0 2.17 0.792 -310 443 8.47 25.0 20.0 4.22 81.0 2.08 0.774 -30.0 415 8.44 25.0 20.0 4.22 81.0 2.08 0.774 -28.0 389 8.41 27.0 18.2 4.01 83.0 1.85 0.720 -28.0 32.1 8.32 20.0 15.9 3.71 88.0 1.86 0.857 -24.0 283 8.25 32.0 14.5 3.52 87.0 1.70 0.635 -22.0 22.6 8.71 34.0 13.3 3.3 90.0 1.54 0.571 -23.0 266 8.21 33.0 12.7 3.24 90.0 1.54 0.571 -20.0 205 8.13 36.0 12.1 3.15 93.0 <t< td=""><td>-35.0</td><td>577</td><td>8.56</td><td>2</td><td>21.0</td><td>24.2</td><td>4.64</td><td></td><td>77.0</td><td>2.41</td><td>0.872</td><td></td><td>133.0</td><td>0.42</td><td>0.167</td></t<>	-35.0	577	8.56	2	21.0	24.2	4.64		77.0	2.41	0.872		133.0	0.42	0.167
-33.0 505 8.52 23.0 22.0 4.43 -32.0 473 8.49 -3.10 443 8.47 -30.0 415 8.49 -20.0 22.0 20.0 2.17 0.702 -30.0 415 8.44 25.0 19.1 4.12 20.0 2.0 0.767 -28.0 388 8.41 25.0 17.4 3.91 82.0 1.80 0.38 0.146 -28.0 32.1 8.32 29.0 16.6 3.81 83.0 1.89 0.698 -27.0 342 8.32 29.0 15.6 3.81 85.0 1.82 0.675 -26.0 32.1 8.25 30.0 15.9 3.43 88.0 1.66 0.655 -22.0 250 8.13 35.0 12.7 3.24 98.0 1.56 0.616 -17.0 184 7.99 38.0 10.1 2.97 1.44 0.32 0.122 -22.0 22.6 8.04 11.1 2.97 1.46 0.551	-34.0	539	8.54	2	2.0	23.0	4.53		78.0	2.32	0.844		134.0	0.41	0.162
-32.0 473 8.49 24.0 21.0 4.32 80.0 2.17 0.787 -310 443 8.44 28.0 19.1 4.12 80.0 2.09 0.767 -28.0 384 8.34 27.0 182 4.01 83.0 19.5 0.767 -28.0 342 8.32 20.0 16.6 3.81 85.0 1.82 0.676 -26.0 301 8.22 20.0 16.6 3.81 85.0 1.82 0.676 -26.0 301 5.23 30.0 15.9 3.71 86.0 1.76 0.655 -24.0 28.8 8.21 -30.0 14.5 3.62 87.0 1.70 0.635 -22.0 22.6 8.17 -34.0 13.8 3.63 90.0 1.54 0.571 -21.0 23.6 8.04 17.2 3.43 90.0 1.54 0.561 -21.0 23.6 8.04 12.2	-33.0	505	8.52	2	23.0	22.0	4.43		79.0	2.24	0.818		135.0	0.40	0.158
	-32.0	473	8.49	2	24.0	21.0	4.32		80.0	2.17	0.792		136.0	0.39	0.154
-30.0 415 8.44 26.0 19.1 4.12 82.0 2.02 0.744 138.0 0.37 0.146 -28.0 364 8.38 28.0 17.4 3.91 83.0 1.95 0.724 138.0 0.36 0.142 -27.0 342 8.35 29.0 16.6 3.81 8.0 1.82 0.668 -25.0 301 8.22 30.0 15.9 3.71 86.0 1.76 0.6658 -24.0 28.3 8.25 30.0 15.9 3.71 3.62 86.0 1.76 0.653 -22.0 250 8.17 34.0 13.3 3.33 90.0 1.54 0.574 -21.0 235 8.13 36.0 12.7 3.24 91.0 1.49 0.561 -20.0 221 8.08 16.1 2.92 1.44 0.541 -14.0 154 7.78 36.0 11.1 2.97 0.161 1.50	-31.0	443	8.47	2	25.0	20.0	4.22		81.0	2.09	0.767		137.0	0.38	0.150
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-30.0	415	8.44	2	26.0	19.1	4.12		82.0	2.02	0.744		138.0	0.37	0.146
-28.0 364 8.38 28.0 17.4 3.91 -27.0 342 8.35 28.0 17.4 3.91 -26.0 321 8.35 23.0 16.6 3.81 -26.0 321 8.32 30.0 15.9 3.71 -28.0 28.6 8.26 30.0 15.9 3.71 -23.0 286 8.21 3.0 1.39 3.43 -20.0 221 8.08 1.66 3.81 -20.0 221 8.08 1.61 3.60 12.7 3.24 -19.0 298 8.04 1.33 3.33 3.33 90.0 1.54 0.578 -19.0 208 8.04 37.0 11.6 3.06 12.7 3.24 -16.0 174 7.89 40.0 10.2 2.81 93.0 1.40 0.527 -11.0 134 7.78 42.0 9.37 2.64 93.0 1.13 0.496 -14.0 154 7.78 42.0 9.37 2.64 9.60	-29.0	389	8.41	2	27.0	18.2	4.01		83.0	1.95	0.720		139.0	0.36	0.142
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-28.0	364	8.38	2	28.0	17.4	3.91		84.0	1.89	0.698		140.0	0.35	0.139
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-27.0	342	8.35	2	29.0	16.6	3.81		85.0	1.82	0.676		141.0	0.34	0.135
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-26.0	321	8.32	3	80.0	15.9	3.71		86.0	1.76	0.655		142.0	0.33	0.132
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-25.0	301	8.28	3	31.0	15.2	3.62		87.0	1.70	0.635	-	143.0	0.32	0.128
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-24.0	283	8.25	3	32.0	14.5	3.52		88.0	1.65	0.616		144.0	0.32	0.125
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-23.0	266	8.21	3	3.0	13.9	3.43	-	89.0	1.59	0.597		145.0	0.31	0.122
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-22.0	250	8.17	3	84.0	13.3	3.33	-	90.0	1.54	0.578	-	146.0	0.30	0.119
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-21.0	235	8.13	3	5.0	12.7	3.24		91.0	1.49	0.561		147.0	0.29	0.116
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-20.0	221	8.08	3	36.0	12.1	3.15		92.0	1.44	0.544		148.0	0.29	0.113
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-19.0	208	8.04	3	0.0	11.0	3.06	-	93.0	1.40	0.527		149.0	0.28	0.110
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-10.0	190	7.99		0.0	10.7	2.97		94.0	1.30	0.011		150.0	0.27	0.107
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-17.0	104	7.94		0.0	10.7	2.09		95.0	1.31	0.490				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-15.0	164	7.03	4	1 0	0.78	2.01		90.0	1.27	0.466	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-13.0	154	7.03		2.0	9.70	2.72	-	97.0	1.23	0.400	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-13.0	146	7.70	4	12.0	8.98	2.04		99.0	1.15	0.439	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-12.0	137	7.66	4	4 0	8.61	2 49		100.0	1 11	0.425				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-11.0	130	7.60	4	5.0	8.26	2.42		101.0	1.08	0.413				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-10.0	122	7.53	4	6.0	7.92	2.34	1	102.0	1.05	0.401	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-9.0	116	7.46	4	7.0	7.60	2.27	1	103.0	1.01	0.389	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-8.0	109	7.39	4	8.0	7.29	2.20		104.0	0.98	0.378				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7.0	103	7.32	4	9.0	7.00	2.14		105.0	0.95	0.367	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-6.0	97.6	7.25	5	50.0	6.72	2.07		106.0	0.92	0.356	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-5.0	92.3	7.17	5	51.0	6.45	2.01		107.0	0.90	0.346				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4.0	87.3	7.09	5	52.0	6.19	1.94		108.0	0.87	0.336	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3.0	82.6	7.01	5	53.0	5.95	1.88		109.0	0.84	0.326				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-2.0	78.2	6.93	5	54.0	5.72	1.82	1	110.0	0.82	0.317	1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1.0	74.1	6.85	5	5.0	5.49	1.77]	111.0	0.79	0.308	1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0	70.2	6.76	5	6.0	5.28	1.71]	112.0	0.77	0.299]			
2.0 63.0 6.58 58.0 4.88 1.61 114.0 0.73 0.282 3.0 59.8 6.49 59.0 4.69 1.56 115.0 0.70 0.274 4.0 56.7 6.40 60.0 4.52 1.51 116.0 0.68 0.266 5.0 53.8 6.30 61.0 4.35 1.46 117.0 0.66 0.259	1.0	66.5	6.67	5	57.0	5.08	1.66]	113.0	0.75	0.290]			
3.0 59.8 6.49 59.0 4.69 1.56 4.0 56.7 6.40 60.0 4.52 1.51 5.0 53.8 6.30 61.0 4.35 1.46	2.0	63.0	6.58	5	58.0	4.88	1.61		114.0	0.73	0.282				
4.0 56.7 6.40 60.0 4.52 1.51 116.0 0.68 0.266 5.0 53.8 6.30 61.0 4.35 1.46 117.0 0.66 0.259	3.0	59.8	6.49	5	59.0	4.69	1.56		115.0	0.70	0.274				
5.0 53.8 6.30 61.0 4.35 1.46 117.0 0.66 0.259	4.0	56.7	6.40	6	60.0	4.52	1.51		116.0	0.68	0.266				
	5.0	53.8	6.30	6	61.0	4.35	1.46	J	117.0	0.66	0.259	J			

NTC10kΩ (same voltages for inputs of Panel Bus I/O Modules and onboard inputs of
Temp.
[°C]EAGLEHAWK NX)Temp.
[°C]Temp.
[°C]Terminal
(°C]Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)Terminal
(°C)

Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]	Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]		Temp. [°C]	Resistance [kΩ]	Terminal voltage [V]	Temp. [°C]
-30	177	7.904	12	18.087	3.998		54	3.099	1.092	96
-29	166.35	7.848	13	17.252	3.894		55	2.986	1.057	97
-28	156.413	7.790	14	16.46	3.792		56	2.878	1.023	98
-27	147.136	7.730	15	15.708	3.690		57	2.774	0.990	99
-26	138.47	7.666	16	14.995	3.591		58	2.675	0.959	100
-25	130.372	7.601	17	14.319	3.492		59	2.579	0.928	
-24	122.8	7.534	18	13.678	3.396		60	2.488	0.898	
-23	115.718	7.464	19	13.068	3.300		61	2.4	0.870	
-22	109.089	7.392	20	12.49	3.207		62	2.316	0.842	
-21	102.883	7.318	21	11.94	3.115		63	2.235	0.815	
-20	97.073	7.241	22	11.418	3.025		64	2.158	0.790	
-19	91.597	7.161	23	10.921	2.937		65	2.083	0.765	
-18	86.471	7.080	24	10.449	2.850		66	2.011	0.740	
-17	81.667	6.996	25	10	2.767		67	1.943	0.718	
-16	77.161	6.910	26	9.572	2.684		68	1.877	0.695	
-15	72.932	6.821	27	9.165	2.603		69	1.813	0.673	
-14	68.962	6.731	28	8.777	2.524		70	1.752	0.652	
-13	65.231	6.639	29	8.408	2.447		71	1.694	0.632	
-12	61.723	6.545	30	8.057	2.372		72	1.637	0.612	
-11	58.424	6.448	31	7.722	2.299		73	1.583	0.593	
-10	55.321	6.351	32	7.402	2.228		74	1.531	0.575	
-9	52.399	6.251	33	7.098	2.159		75	1.481	0.557	
-8	49.648	6.150	34	6.808	2.091		76	1.433	0.541	
-7	47.058	6.047	35	6.531	2.025		77	1.387	0.524	
-6	44.617	5.943	36	6.267	1.962		78	1.342	0.508	
-5	42.317	5.838	37	6.015	1.900		79	1.299	0.493	
-4	40.15	5.732	38	5.775	1.840		80	1.258	0.478	
-3	38.106	5.624	39	5.546	1.781		81	1.218	0.464	
-2	36.18	5.516	40	5.327	1.724		82	1.179	0.450	
-1	34.363	5.408	41	5.117	1.669		83	1.142	0.436	
0	32.65	5.299	42	4.917	1.616		84	1.107	0.423	
1	31.027	5.189	43	4.726	1.564		85	1.072	0.411	
2	29.494	5.079	44	4.543	1.514		86	1.039	0.399	
3	28.047	4.969	45	4.369	1.465		87	1.007	0.387	
4	26.68	4.859	46	4.202	1.418		88	0.976	0.375	
5	25.388	4.750	47	4.042	1.373		89	0.947	0.365	
6	24.166	4.641	48	3.889	1.329		90	0.918	0.354	
7	23.01	4.532	49	3.743	1.286		91	0.89	0.344	
8	21.916	4.423	50	3.603	1.244		92	0.863	0.334	
9	20.88	4.316	51	3.469	1.204		93	0.838	0.324	
10	19.898	4.209	52	3.34	1.166		94	0.813	0.315	
11	18.968	4.103	53	3.217	1.128	J	95	0.789	0.306	

0.765

0.743

0.721

0.7

0.68

0.297

0.289

0.280

0.276

0.265

INDEX

accuracies see sensor input accuracies BACnet BACnet MS/TP via RS485-1 6 BACnet MS/TP via RS485-2 6 **BACnet IP 2** LED 7 **BACnet MS/TP 2** BACnet MS/TP via RS485-1 8, 36, 37, 38, 41 BACnet MS/TP via RS485-2 8 disposal WEEE Directive 2002/96/EC 2 Ethernet / RJ45 sockets 6 details 7 protocol version 2 External HMI power consumption 3 extra parts TPU-11-01 removable push-in terminal plugs 20 TPU-45-01 removable push-in terminal plugs 20 fusing 20 LEDs 6 L1 8,45 L2 8,46 power LED 8, 45 Rx 8,46 status LED 8, 45 Tx 8,46 M-Bus connection 42 Modbus connection 10, 39 via RS485-1 8.40 via RS485-2 8, 41

Panel Bus connection 30 multiple rails, single transformer 31, 32 via RS485-1 8 via RS485-2 8 power supply failure indication 45 power supply (field devices) cable specifications 34 via I/O module 20, 21 power supply (Panel Bus I/Os) cable specifications 33 RS232 / RJ45 socket 6, 7, 42 safety electrical safety as per EN60204-1 47 general safety information 2, 20 PELV 47 SELV 47 safety values/positions safety positions of AOs 25 safety positions of relays 26 safety values of sensor inputs 49 sensor characteristics NTC 20 kOhm 50 sensor input accuracies 24, 49 AOs 25 Uls 24 USB USB 2.0 Device Interface 6 details 7 initially accessing EAGLEHAWK NX via Ethernet/IP 27 USB 2.0 Host Interface 6 details 7

Manufactured for and on behalf of the Connected Building Division of Honeywell Products and Solutions Sårl, Z.A. La Pièce 16, 1180 Rolle, Switzerland by its Authorized Representative:

CentraLine Honeywell GmbH Böblinger Strasse 17 71101 Schönaich, Germany Phone +49 (0) 7031 637 845 Fax +49 (0) 7031 637 740 info@centraline.com www.centraline.com

Subject to change without notice EN1Z-1039GE51 R1218

