

VFF Series

IMMERSION TEMPERATURE SENSOR

PRODUCT DATA

GENERAL

The VFF Immersion Temperature Sensor is used in heating, cooling or domestic hot water applications requiring fast response temperature measurement.

TYPES

OS no.	Sensor element / sensor length	Sensing range	
VFF00-75P65	PT1000 / 75 mm		
VFF00-220P65	PT1000 / 220 mm	-20+140 °C	
VFF00-300P65	PT1000 / 300 mm		
VFF01-75P65	Ni 1000 / 75 mm	(-4+284 °F)	
VFF01-220P65	Ni 1000 / 220 mm		
VFF01-300P65	Ni 1000 / 300 mm		
VFF10-75P65	NTC10kΩ / 75 mm		
VFF10-220P65	NTC10k Ω / 220 mm	-20+110 °C (-4+230 °F)	
VFF10-300P65	NTC10k Ω / 300 mm	(4200 1)	
VFF20-75P65	NTC20kΩ / 75 mm		
VFF20-220P65	NTC20kΩ / 220 mm	-20+140 °C (-4+284 °F)	
VFF20-300P65	NTC20k Ω / 300mm		

FEATURES

- Fast response time
- Operating range of -20...+140 °C (with NTC10kΩ: -20... +110 °C)
- **Easy installation**
- Adjustable well length
- Stainless steel body material

SPECIFICATIONS

N	٥m	ina	l va	lue
	VIII	IIIu	ı vu	ıuc

VFF00 (PT1000)	1000 Ω at 0 $^{\circ}$ C
VFF01 (Ni 1000)	1000 Ω at 0 °C
VFF10 (NTC10kΩ)	10 kΩ at 25 °C
VFF20 (NTC20kΩ)	20 kΩ at 25 °C

Accuracy	
VFF00 (PT1000)	IEC751 Class B
	±0.3 °C at 0 °C (32 °F)
VFF01 (Ni 1000)	±0.4 °C at 0 °C (32 °F)
VFF10 (NTC10kΩ)	±0.2 °C at 25 °C (77 °F)
VFF20 (NTC20kΩ)	±0.2 °C at 25 °C (77 °F)

Sensitivity

VFF00 (PT1000)	≈ 3.85 Ω / K
VFF01 (Ni 1000)	≈ 6.81 Ω / K
VFF10 (NTC10 $\acute{k}\Omega$) VFF20 (NTC20 $\emph{k}\Omega$)	\approx -440 Ω / K at 25 °C (non-linear) \approx -934.5 Ω / K at 25 °C (non-linear)

Response time τ_{63} < 2.5 seconds (using brass /

stainless steel well)

Well

PN16 (nominal) Pressure rating

Max. flow rate in water at

16 bar and < 140°C (VFF10: <110 °C)

75 mm length 8 m/s 220 mm length 1.5 m/s 300 mm length $0.5 \, \text{m/s}$

Medium Mineral and synthetic oil,

> glycol-water mixture, domestic hot water, swimming pool water

Material Stainless steel, 1,4571

ø 4 mm, length ~ 75/220/300 mm **Dimensions**

R1/2" **Outlet size**

Tightening torque 10 ±2 Nm, 13-mm wrench

Cable

Length 2.5 m IP 65 **Protection class**

ELECTRICAL CONNECTION

The wiring of the temperature sensor must be in accordance with the overall wiring circuit diagram. The terminals are not polarized; thus, even if the wires are connected in reverse, no malfunction will occur.

DIMENSIONS

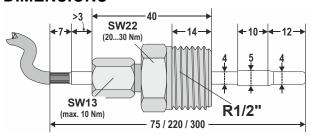


Fig. 1. Dimensions (in mm)

MOUNTING

NOTE: Do not dismount the device by pulling the connection cable – which is sheathed with silicone and therefore easily damaged by mechanical stress.

Screw the device into place with a max. torque of 10 ± 2 Nm. The device should be inserted so that the tip is well past the laminar flow at the inner wall of the pipe (min. 25 mm) – ideally at the middle of the pipe, though this may result in excessive mechanical stress of the well in the event of high flow rates. See also Fig. 2 through Fig. 4.

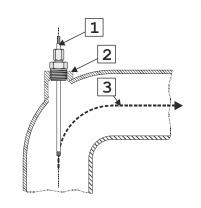


Fig. 2. ≤ DN50, elbow pipe

- 1. Temperature sensor (max. torque = $10 \pm 2 \text{ Nm}$)
- 2. Weld junction with the screw thread
- 3. Direction of flow

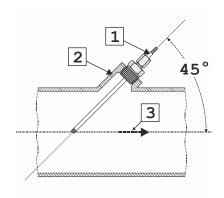


Fig. 3. ≤ DN50, straight pipe

- 1. Temperature sensor (max. torque = $10 \pm 2 \text{ Nm}$)
- 2. Weld junction with the screw thread
- 3. Direction of flow

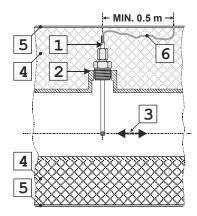


Fig. 4. DN65...150, coldwater application

- 1. Temperature sensor (max. torque = $10 \pm 2 \text{ Nm}$)
- 2. Weld junction with the screw thread
- 3. Flow in either direction
- 4. Insulation material
- 5. Water vapor barrier
- 6. Minimum 0.5 meter through insulation material before exit.

Honeywell
THE POWER OF CONNECTED

Manufactured for and on behalf of the Environmental & Energy Solutions Division of Honeywell Technologies Sarl, Rolle, Z.A. La Pièce 16, Switzerland by its Authorized Representative:

Home and Building Technologies

Honeywell GmbH Böblinger Strasse 17 71101 Schönaich, Germany Phone +49 (0) 7031 637 01 Fax +49 (0) 7031 637 740 http://ecc.emea.honeywell.com